Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Material Used
2.1.1. Concrete
2.1.2. Reinforcement
2.2. Comparison Variants
- V1 (ORC steel): Standard concrete reinforced with a 6 mm diameter steel curry net with a mesh of 150 mm × 150 mm. Total thickness of facade boards is 60 mm (see Figure 1).
- V2 (TRC glass): High performance concrete reinforced with 2 layers of AR glass textile reinforcement. Total thickness of facade panels is 18 mm (see Figure 1).
- V3 (TRC carbon): High performance concrete reinforced with 2 layers of carbon textile reinforcement. Total thickness of facade panels is 18 mm.
- V4 (TRC basalt): High performance concrete reinforced with 2 layers of basalt textile reinforcement. Total thickness of facade panels is 18 mm.
3. Environmental Impacts Assessment Using Life Cycle Assessment (LCA)
3.1. Functional Unit
3.2. System Boundaries
3.2.1. Production Phase
3.2.2. Phase of Use
3.2.3. End of Life Cycle
3.3. Life Cycle Inventory
3.4. Life Cycle Impact Assessment
4. Results and Discussion
Life Cycle Inventory (LCI) Analysis Outputs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xing, S.; Xu, Z.; Jun, G. Inventory analysis of LCA on steel- and concrete-construction office buildings. Energy Build. 2008, 40, 1188–1193. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Y.; Zhang, Z. An LCA-based environmental impact assessment model for construction processes. Build. Environ. 2010, 45, 766–775. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Petek Gursel, A.; Masanet, E.; Horvath, A.; Stadel, A. Life-cycle inventory analysis of concrete production: A critical review. Cem. Concr. Compos. 2014, 51, 38–48. [Google Scholar] [CrossRef]
- Jia Wen, T.; Chin Siong, H.; Noor, Z.Z. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy Build. 2015, 93, 295–302. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life cycle energy analysis of buildings: An overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Fiala, C. Optimalizace Betonových Konstrukcí v Environmentálních Souvislostech; CIDEAS-Centrum Integrovaného Navrhování Progresivních Stavebních Konstrukcí: Prague, Czech Republic, 2011. [Google Scholar]
- Flower, D.J.M.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Hájek, P.; Fiala, C.; Kynčlová, M. Life cycle assessments of concrete structures—A step towards environmental savings. Struct. Concr. 2011, 12, 13–22. [Google Scholar] [CrossRef]
- Cement Sustainability Initiative (CSI). Available online: https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/Cement-Sustainability-Initiative-CSI (accessed on 20 June 2019).
- Kumar, A.; Vlach, T.; Chira, A.; Laiblova, L.; Škapin, A.S.; Tywoniak, J.; Hajek, P. Nanocoating on alkali-resistant glass fibers by octadecyltrichlorosilane to improve the mechanical strength of fibers and fibers/epoxy composites. Text. Res. J. 2017, 88, 1038–1046. [Google Scholar] [CrossRef]
- Pidun, K.; Schulze, M. Designed Textile Reinforced Concrete Elements for Architectural Facade Applications. Available online: https://www.scientific.net/AMM.719-720.171 (accessed on 16 April 2019).
- Zhang, Y.; Zhang, J.; Luo, W.; Wang, J.; Shi, J.; Zhuang, H.; Wang, Y. Effect of compressive strength and chloride diffusion on life cycle CO2 assessment of concrete containing supplementary cementitious materials. J. Clean. Prod. 2019, 218, 450–458. [Google Scholar] [CrossRef]
- Naik Tarun, R. Sustainability of Concrete Construction. Pract. Period. Struct. Des. Constr. 2008, 13, 98–103. [Google Scholar] [CrossRef]
- Dong, Y. Performance assessment and design of ultra-high performance concrete (UHPC) structures incorporating life-cycle cost and environmental impacts. Constr. Build. Mater. 2018, 167, 414–425. [Google Scholar] [CrossRef]
- Hájek, P. Význam betonu a betonových konstrukcí z hlediska kritérií udržitelné výstavby. Časopis Staveb. Časopis Stavebních inženýrů Techniků a Podnikatelů 2007, 11–12. Available online: https://www.casopisstavebnictvi.cz/vyznam-betonu-a-betonovych-konstrukci-z-hlediska-kriterii-udrzitelne-vystavby_N467 (accessed on 20 September 2019).
- Supino, S.; Malandrino, O.; Testa, M.; Sica, D. Sustainability in the EU cement industry: The Italian and German experiences. J. Clean. Prod. 2016, 112, 430–442. [Google Scholar] [CrossRef]
- Müller, H.S.; Haist, M.; Vogel, M. Assessment of the sustainability potential of concrete and concrete structures considering their environmental impact, performance and lifetime. Constr. Build. Mater. 2014, 67, 321–337. [Google Scholar] [CrossRef]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; de Pison, F.J.M.; Pernia-Espinoza, A.V. Effects of Design and Construction on the Carbon Footprint of Reinforced Concrete Columns in Residential Buildings. Mater. Construcción 2019, 69, 193. [Google Scholar] [CrossRef] [Green Version]
- Kubissa, W.; Jaskulski, R.; Reiterman, P. Ecological concrete based on blast-furnace cement with incorporated coarse recycled concrete aggregate and fly ash addition. J. Renew. Mater. 2017, 5, 53–61. [Google Scholar] [CrossRef]
- Randl, N.; Steiner, T.; Ofner, S.; Baumgartner, E.; Mészöly, T. Development of UHPC mixtures from an ecological point of view. Constr. Build. Mater. 2014, 67, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Pavlu, T. The Utilization of Recycled Materials for Concrete and Cement Production—A Review. In Fib Conference: Sustainable Concrete: Materials and Structures; Iop Publishing Ltd.: Bristol, UK, 2018; Volume 442, p. 012014. [Google Scholar]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López-González, L.M. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production. Materials 2017, 10, 817. [Google Scholar] [CrossRef]
- Mobasher, B. Mechanics of Fiber and Textile Reinforced Cement Composites; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Chira, A.; Kumar, A.; Vlach, T.; Laiblová, L.; Hajek, P. Textile-reinforced concrete facade panels with rigid foam core prisms. J. Sandw. Struct. Mater. 2016, 18, 200–214. [Google Scholar] [CrossRef]
- Hegger, J.; Zell, M.; Horstmann, M. Textile reinforced concrete–realization in applications. In Proceedings of the International Fib Symposium Tailor Made Concrete Structures: New Solutions for Our Society, Amsterdam, The Netherlands, 19–22 May 2008; pp. 357–362. [Google Scholar]
- Holčapek, O.; Vogel, F.; Reiterman, P. Using of Textile Reinforced Concrete Wrapping for Strengthening of Masonry Columns with Modified Cross-section Shape. Procedia Eng. 2017, 195, 62–66. [Google Scholar] [CrossRef]
- Peled, A.; Bentur, A.; Mobasher, B. Textile Reinforced Concrete; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4665-5255-5. [Google Scholar]
- Vlach, T.; Hájek, P.; Fiala, C.; Laiblová, L.; Řepka, J.; Kokeš, P. Waffle Facade Elements from Textile Reinforced High Performance Concrete. Proc. Hipermat 2016, 10, 161–162. [Google Scholar]
- Hegger, J.; Schneider, H.; Sherif, A.; Molter, M.; Voss, S. Exterior cladding panels as an application of textile reinforced concrete. Spec. Publ. 2004, 224, 55–70. [Google Scholar]
- Brameshuber, W. Report 36: Textile Reinforced Concrete—State-of-the-Art Report of RILEM TC 201-TRC.; RILEM Publications: Aachen, Germany, 2006; ISBN 978-2-912143-99-0. [Google Scholar]
- Tej, P.; Kolísko, J.; Bouška, P.; Bittner, T.; Mušutová, V. Loading Tests of Thin Plates Made of Ultra-High Performance Concrete Reinforced by PVA Fibers and 2D Textile Glass Reinforcement. Available online: https://www.scientific.net/AMR.1095.569 (accessed on 3 September 2019).
- Vogel, F.; Holčapek, O.; Konvalinka, P. Study of the Strength Development of the Cement Matrix for Textile Reinforced Concrete. Available online: https://www.scientific.net/AMR.1054.99 (accessed on 3 September 2019).
- Hegger, J.; Kulas, C.; Schneider, H.N.; Brameshuber, W.; Hinzen, M.; Raupach, M.; Büttner, T. TRC pedestrian bridge-design, load-bearing behavior and production processes of a slender and light-weight construction. In Proceedings of the International RILEM Conference on Material Science, Aachen, Germany, 6–8 September 2010; Volume 1, pp. 353–364. [Google Scholar]
- Brückner, A.; Ortlepp, R.; Curbach, M. Anchoring of shear strengthening for T-beams made of textile reinforced concrete (TRC). Mater. Struct. 2008, 41, 407–418. [Google Scholar] [CrossRef]
- Chira, A.; Kumar, A.; Vlach, T.; Laiblová, L.; Škapin, A.S.; Hájek, P. Property Improvements of Alkali Resistant Glass Fibres/Epoxy Composite with Nanosilica for Textile Reinforced Concrete Applications. Mater. Des. 2016, 89, 146–155. [Google Scholar] [CrossRef]
- Ferreiro-Cabello, J.; Fraile-Garcia, E.; Martinez-Camara, E.; Perez-de-la-Parte, M. Sensitivity analysis of Life Cycle Assessment to select reinforced concrete structures with one-way slabs. Eng. Struct. 2017, 132, 586–596. [Google Scholar] [CrossRef]
- Pereira, C.; Hamadyk, E.; Silva, A. Probabilistic analysis of the durability of architectural concrete surfaces. Appl. Math. Model. 2020, 77, 199–215. [Google Scholar] [CrossRef]
- ČSN EN ISO 14040 Environmentální Management—Posuzování Životního Cyklu—Zásady a Osnova; Úřad pro technickou normalizaci, metrologii a státní zkušebnictví: Prague, Czech Republic, 2006.
- GaBi Professional. Available online: http://www.gabi-software.com/databases/professional/ (accessed on 1 September 2019).
- EN 16757:2017 Sustainability of Construction Works—Environmental Product Declarations—Product Category Rules for Concrete and Concrete Elements; CEN: Brussels, Belgium, 2017.
- Fiala, C. iCFconcrete software. Faculty of Civil Engineering. CTU in Prague: Prague, Czech Republic, 2019. [Google Scholar]
- Kočí, V. LCA a EPD Stavebních Výrobků: Posuzování Životního Cyklu a Environmentální Prohlášení o Produktu Jako Cesta k Udržitelnému Stavebnictví; Česká rada pro šetrné budovy: Prague, Czech Republic, 2012; ISBN 978-80-260-3504-6. [Google Scholar]
HPC | OC | ||
---|---|---|---|
Component | [kg/m3] | Component | [kg/m3] |
Technical sand | 979 | Sands | 1150 |
cement I 42.5R | 693 | Cement CEM II/B-M (S-LL) 32.5 | 360 |
quartz flour | 332 | gravel | 810 |
Silica fume | 178 | - | - |
superplasticizer | 29.6 | superplasticizer | 2.7 |
water | 174 | water | 155 |
total | 2385.6 | total | 2477.7 |
Type of Roving | Linear Density of Roving [Tex] | Tensile Strength [MPa] | Modulus of Elasticity [GPa] | Density [kg/m3] | Cross-Sectional Area of Roving [mm2] |
---|---|---|---|---|---|
AR-glass | 2400 | 1700 | 72 | 2680 | 0.896 |
Carbon | 1650 | 4900 | 230 | 1800 | 0.917 |
Basalt | 2520 | 2600–2900 | 85–90 | 2660 | 0.947 |
Phase 1 Production Including Assembly | ||||||
---|---|---|---|---|---|---|
Input Data | Unit | V1 | V2 | V3 | V4 | |
ORC | TRC Glass | TRC Carbon | TRC Basalt | |||
Concrete | Concrete ORC (C 30/37) | m3 | 3.600 | 0 | 0 | 0 |
Concrete HPC 1 | m3 | 0 | 1.080 | 1.080 | 1.080 | |
Concrete components | Cement CEM II/B-M (S-LL) 32.5 | t | 1.296 | 0.000 | 0.000 | 0.000 |
Cement CEM I 42.5 R | t | 0.000 | 0.748 | 0.748 | 0.748 | |
Technical sand | t | 0.000 | 1.057 | 1.057 | 1.057 | |
Sand/gravel | t | 7.056 | 0.000 | 0.000 | 0.000 | |
Silica fume | t | 0.000 | 0.192 | 0.192 | 0.192 | |
Quartz powder | t | 0.000 | 0.359 | 0.398 | 0.398 | |
Super plasticizer (PCE) | t | 0.010 | 0.032 | 0.032 | 0.032 | |
Water | t | 0.558 | 0.188 | 0.188 | 0.188 | |
Reinforcement | Steel reinforcement | t | 0.266 | 0.000 | 0.000 | 0.000 |
Glass reinforcement | t | 0.000 | 0.023 | 0.000 | 0.000 | |
Carbon reinforcement | t | 0.000 | 0.000 | 0.016 | 0.000 | |
Basalt reinforcement | t | 0.000 | 0.000 | 0.000 | 0.021 | |
Epoxy resin treatment | t | 0.000 | 0.014 | 0.014 | 0.014 | |
Transport | Transport (long distance > 30 km) | tkm | 662 | 326 | 324 | 376 |
Transport (short distance < 30 km) | tkm | 248 | 76 | 76 | 76 |
Phase 2 Use | ||||||
---|---|---|---|---|---|---|
Input Data | Unit | V1 | V2 | V3 | V4 | |
ORC | TRC Glass | TRC Carbon | TRC Basalt | |||
Concrete | Concrete ORC (C 30/37) | m3 | 0.540 | 0.000 | 0.000 | 0.000 |
Concrete HPC 1 | m3 | 0.000 | 0.054 | 0.054 | 0.054 | |
Concrete components | Cement CEM II/B-M (S-LL) 32.5 | t | 0.194 | 0.000 | 0.000 | 0.000 |
Cement CEM I 42.5 R | t | 0.000 | 0.037 | 0.037 | 0.037 | |
Technical sand | t | 0.000 | 0.053 | 0.053 | 0.053 | |
Sand/gravel | t | 1.058 | 0.000 | 0.000 | 0.000 | |
Silica fume | t | 0.000 | 0.010 | 0.010 | 0.010 | |
Quartz powder | t | 0.000 | 0.018 | 0.018 | 0.018 | |
Super plasticizer (PCE) | t | 0.001 | 0.002 | 0.002 | 0.002 | |
Water | t | 0.084 | 0.009 | 0.009 | 0.009 | |
Reinforcement | Steel reinforcement | t | 0.040 | 0.000 | 0.000 | 0.000 |
Glass reinforcement | t | 0.000 | 0.001 | 0.000 | 0.000 | |
Carbon reinforcement | t | 0.000 | 0.000 | 0.001 | 0.000 | |
Basalt reinforcement | t | 0.000 | 0.000 | 0.000 | 0.001 | |
Epoxy resin treatment | t | 0.000 | 0.001 | 0.001 | 0.001 | |
service | Replacement of facade elements | t | 1.378 | 0.131 | 0.130 | 0.131 |
Removal | t | 1.378 | 0.131 | 0.130 | 0.131 | |
Water cleaning (ones per 10 years) | t | 3.000 | 3.000 | 3.000 | 3.000 | |
Transport | Transport (long distance > 30 km) | tkm | 99 | 16 | 16 | 19 |
Transport (short distance < 30 km) | tkm | 79 | 8 | 8 | 8 |
Phase 3: End of Life | ||||||
---|---|---|---|---|---|---|
Input Data | Unit | V1 | V2 | V3 | V4 | |
ORC | TRC Glass | TRC Carbon | TRC Basalt | |||
Concrete | Demolition of concrete structure | t | 9.2 | 2.6 | 2.6 | 2.6 |
Transport | Transport (short distance) | tkm | 276 | 78 | 78 | 78 |
Data Outputs | V1 | V2 | V3 | V4 |
---|---|---|---|---|
Non-Renewable Energy Resources (kg) | 382.1 | 237.8 | 401.5 | 230.0 |
Crude oil (resource) | 110.9 | 78.6 | 112.3 | 80.8 |
Hard coal (resource) | 67.6 | 38.8 | 63.1 | 40.6 |
Lignite (resource) | 70.2 | 60.0 | 125.8 | 54.7 |
Natural gas (resource) | 132.6 | 60.1 | 100.1 | 53.8 |
Peat (resource) | 0.78 | 0.21 | 0.22 | 0.22 |
Uranium (resource) | 0.003 | 0.001 | 0.002 | 0.001 |
Non-Renewable Resources (kg) | 15,430 | 5146 | 6352 | 5098 |
Bauxite | 3.76 | 3.14 | 2.82 | 2.73 |
Bentonite | 2.63 | 1.92 | 2.02 | 1.92 |
Dolomite | 3.06 | 2.17 | 0.21 | 0.10 |
Gypsum (natural gypsum) | 45.9 | 29.08 | 29.1 | 29.1 |
Inert rock | 1668 | 1156 | 2333 | 1068 |
Limestone (calcium carbonate) | 1807 | 1211 | 1206 | 1203 |
Natural aggregate | 8970 | 1315 | 1317 | 1316 |
Natural pumice | 52.7 | 0.001 | 0.001 | 0.002 |
Quartz sand (silica sand; silicon dioxide) | 316.9 | 680.1 | 709.6 | 709.9 |
Sodium chloride (rock salt) | 4.02 | 20.6 | 22.3 | 20.6 |
Soil | 2067 | 578.1 | 582.4 | 581.8 |
Renewable Resources (kg) | 969,981 | 566,858 | 1,049,538 | 539,285 |
Water | 966,315 | 564,630 | 1,044,791 | 537,151 |
Aggregated DataAll Life Cycle | |||||
---|---|---|---|---|---|
Potentials | Unit | V1 | V2 | V3 | V4 |
ORC | TRC Glass | TRC Carbon | TRC Basalt | ||
Global warming potential (GWP) | [kg CO2 eq.] | 1580 | 1020 | 1310 | 1000 |
Ozone depletion (ODP) | [kg R11 eq.] | 0.68 × 10−6 | 2.10 × 10−6 | 2.10 × 10−6 | 2.10 × 10−6 |
Acidification (AP) | [kg SO2 eq.] | 3.46 | 2.05 | 2.35 | 1.94 |
Eutrophication (EP) | [kg Phosphate eq.] | 0.504 | 0.329 | 0.424 | 0.336 |
Abiotic depletion (ADP) | [kg Sb eq.] | 0.0019 | 0.0038 | 0.0018 | 0.0016 |
Photochemical oxidant creation (POCP) | [kg Ethene eq.] | 0.198 | 0.141 | 0.179 | 0.131 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laiblová, L.; Pešta, J.; Kumar, A.; Hájek, P.; Fiala, C.; Vlach, T.; Kočí, V. Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study. Materials 2019, 12, 3194. https://doi.org/10.3390/ma12193194
Laiblová L, Pešta J, Kumar A, Hájek P, Fiala C, Vlach T, Kočí V. Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study. Materials. 2019; 12(19):3194. https://doi.org/10.3390/ma12193194
Chicago/Turabian StyleLaiblová, Lenka, Jan Pešta, Anuj Kumar, Petr Hájek, Ctislav Fiala, Tomáš Vlach, and Vladimír Kočí. 2019. "Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study" Materials 12, no. 19: 3194. https://doi.org/10.3390/ma12193194
APA StyleLaiblová, L., Pešta, J., Kumar, A., Hájek, P., Fiala, C., Vlach, T., & Kočí, V. (2019). Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study. Materials, 12(19), 3194. https://doi.org/10.3390/ma12193194