Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials and Methods
2.2. Results and Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References and Note
- Vračević, M. A Contribution to Durability of Masonry Structures. Ph.D. Thesis, Faculty of Civil Enginnering and Architecture Osijek, Osijek, Croatia, February 2019; 196p. (In Croatian). [Google Scholar]
- Luo, Q.; Liu, D.X.; Qiao, P.; Feng, G.; Sun, L.Z. Microstructural damage characterization of concrete under freeze-thaw action. Int. J. Damage Mech. 2017, 27, 1–18. [Google Scholar] [CrossRef]
- Marczewska, J.; Piasta, W. The impact of air content on the durability of concrete under combined sulphate and freeze-thaw attack. MATEC Web Conf. 2018, 163, 05002. [Google Scholar] [CrossRef]
- Torok, A.; Szemerey-Kiss, B. Freeze-thaw durability of repair mortars and porous limestone: compatibility issues. Prog. Earth Planet. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Sikora, P.; Horszczaruk, E.; Cendrowski, K.; Mijowska, E. The Influence of Nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites. Nanoscale Res. Lett. 2016, 11, 182. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, R.; Li, S.; Zhao, Y. Assessment of the freeze–thaw resistance of concrete incorporating carbonated coarse recycled concrete aggregates. J. Ceram. Soc. Jan. 2017, 125, 837–845. [Google Scholar] [CrossRef]
- Botas, S.; Rato, V.; Faria, P. Testing the Freeze/Thaw Cycles in Lime Mortar. In Proceedings of the 2nd Historic Mortars Conference—HMC 2010 and RILEM TC 203-RHM Final Workshop, Prague, Czech Republic, 22–24 September 2010; pp. 417–425. [Google Scholar]
- Edgell, G.J.; Wilson, N. The Development of A Freeze Thaw Test for Mortar. In Proceedings of the 13th International Brick and Block Masonry Conference, Amsterdam, The Netherlands, 4–7 July 2004; pp. 1–10. [Google Scholar]
- CEN/TS 772-22:2006 Methods of Test for Masonry Units—Part 22: Determination of Freeze/Thaw Resistance of Clay Masonry Units; European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2006.
- Hashimoto, K.; Yokota, H.; Sugiyama, T. Pore Structure Analysis of Mortar Under Freeze-Thaw Cycles Using X-Ray Computed Tomography. In Proceedings of the Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, NV, USA, 7–11 August 2016. [Google Scholar]
- Setzer, M.J.; Fagerlund, G.; Janssen, D.J. CDF Test—Test method for the freeze-thaw resistance of concrete—Tests with sodium chloride solution (CDF). Mater. Struct. 1996, 29, 523–528. [Google Scholar] [CrossRef]
- Jang, S.-J.; Rokugo, K.; Park, W.-S.; Yun, H.-D. Influence of rapid freeze-thaw cycling on the mechanical properties of sustainable strain-hardening cement composite (2SHCC). Materials 2014, 7, 1422–1440. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.C.S.; Juvandes, L.F.P.; Rodrigues, J.D.; Ferreira, A.J.M.; Marques, A.T. Behaviour of cement and polymer mortar materials to rapid freeze-thaw cycling. Mater. Sci. Forum 2010, 636–637, 1329–1335. [Google Scholar] [CrossRef]
- ASTM C666 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; American Society for Testing and Materials: West Conshohocken, PA, USA, 1977.
- Funk, B.; Gohler, D.; Sachsenhauser, B.; Stintz, M.; Stahlmecke, B.; Johnson, B.A.; Wohlleben, W. Impact of freeze–thaw weathering on integrity, internal structure and particle release from micro and nanostructured cement composites. Envoromental Sci. Nano 2019, 6, 1443–1456. [Google Scholar] [CrossRef]
- Mohammed, S.; Elhem, G.; Mekki, B. Effect of freeze—Thaw cycles on the physicomechanical properties of a pozzolanic mortar. Constr. Build. Mater. 2017, 134, 32–38. [Google Scholar]
- Ugur Ozturk, A.; Tugrul Erdem, R. Influence of the air-entraining admixture with different superplasticizers on the freeze-thaw resistance of cement mortars. Rom. J. Mater. 2016, 46, 75–81. [Google Scholar]
- Dzigita, N.; Giedrius, G. Research into the properties of concrete modified with natural zeolite addition. Constr. Build. Mater. 2016, 113, 964–969. [Google Scholar]
- Jihwan, K.; Jae-Heum, M.; Jae Won, S.; Jongsung, S.; Hyeon-Gi, L.; Goangseup, Z. Durability properties of a concrete with waste glass sludge exposed to freezeand-thaw condition and de-icing salt. Constr. Build. Mater. 2014, 66, 398–402. [Google Scholar]
- Zhi, G.; Yuanyuan, W.; Renjuan, S.; Xinsheng, W.; Yanhua, G. Influence of ground waste clay brick on properties of fresh and hardened concrete. Constr. Build. Mater. 2015, 98, 128–136. [Google Scholar]
- Mathialagan, S.; Johnson, A.; Ramappa, R.N. Effect of binder content and water-binder ratio in mortar developed using partial replacement of cement with palm oil clinker powder. In Proceedings of the 14th International Conference on Concrete Engineering and Technology, Kuala Lumpur, Malaysia, 7–8 August 2018; p. 082007. [Google Scholar]
- Yun, H.D.; Rokugo, K. Freeze-thaw influence on the flexural properties of ductile fiber-reinforced cementitious composites (DFRCCs) for durable infrastructures. Cold Reg. Sci. Technol. 2012, 78, 82–88. [Google Scholar] [CrossRef]
- Richardson, A.E.; Coventry, K.A.; Wilkinson, S. Freeze/thaw durability of concrete with synthetic fibre additions. Cold Reg. Sci. Technol. 2012, 83–84, 49–56. [Google Scholar] [CrossRef]
- Niu, D.; Jiang, L.; Bai, M.; Miao, Y. Study of the performance of steel fiber reinforced concrete to water and salt freezing condition. Mater. Des. 2013, 44, 267–273. [Google Scholar] [CrossRef]
- Verma, H.; Maurya, N.K.; Falsu, S.; Thakur, R. The influence of lime as partial replacement of cement on strength Characteristics of mortar and concrete. J. Emerg. Technol. Innov. Res. 2019, 6, 326–332. [Google Scholar]
- Wang, C.; Liu, Z.L.; Yu, L. Relationship between anti-frozen durability and pore structure on concrete in freeze and thaw cycle environment. MATEC Web Conf. 2018, 238, 02010. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, G.; Pang, C.; Yan, X.; Qin, H. Influence of pore structures on the frost resistance of concrete. Mag. Concr. Res. 2017, 69, 271–279. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Y.; Li, N. Pore structure and freezing resistance of nanoclay modified cement based materials. J. Mater. Res. Innov. 2014, 18, S2-358–S2-362. [Google Scholar] [CrossRef]
- EN 1015-2:2000 Methods of Test for Mortar for Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars; European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 2000.
- EN 1015-3:1999 Methods of Test for Mortar for Masonry. Determination of Consistence of Fresh Mortar (by Flow Table); European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 1999.
- EN 1015-6:1999 Methods of Test for Mortar for Masonry. Determination of Bulk Density of Fresh Mortar; European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 1999.
- EN 1015-7:1999 Methods of Test for Mortar for Masonry. Determination of Air Content of Fresh Mortar; European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 1999.
- EN 1015-11:1999 Methods of Test for Mortar for Masonry. Determination of Flexural and Compressive Strength of Hardened Mortar; European Committee for Standardization (CEN, French: Comité Européen de Normalisation): Brussels, Belgium, 1999.
- HRN B.D8.011:1987. Glinene Opeke, Blokovi i Ploče—Metode Ispitivanja, Točka 9. Provjeravanje Postojanosti Prema Mrazu. (In Croatian)
- Grymin, W.; Koniorczyk, M.; Konca, P.; Marciniak, A.; Gawin, D. Evolution of the cement mortar microstructure caused by salt crystallization and water freezing investigated by multicycle mercury intrusion porosimetry. In Proceedings of the XIII International Conference on Durability of Building Materials and Components, Sao Paulo, Brazil, 2–5 September 2014; pp. 930–937. [Google Scholar]
- Gulbe, L.; Vitina, I.; Setina, J. The influence of cement on properties of lime mortars. Procedia Eng. 2017, 172, 325–332. [Google Scholar] [CrossRef]
- Zongshou, L.; Weihong, X.; Wei, C. Cementitious Materials Science: Theories and Applications; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Karakurt, C.; Bayazit, Y. Freeze-thaw resistance of normal and high strength concretes produced with fly ash and silica fume. Adv. Mater. Sci. Eng. 2015, 2015, 830984. [Google Scholar] [CrossRef]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; García-del-Cura, M.Á. Non-linear decay of building stones during freeze-thaw weathering processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
Mortar Type/Constituent | LBM 1-2-12 | LBM 1-2-9 | LBM 1-2-6 | LM 1-4 | LM 1-3 | LM 1-2 | CM 1-4 | CM 1-3 | CM 1-2 | ACM 1-4 | ACM 1-3 | ACM 1-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cement (kg) | 149.73 | 175.58 | 212.23 | - | - | - | 459.95 | 541.63 | 658.59 | 459.95 | 541.63 | 658.59 |
Lime (kg) | 219.92 | 257.90 | 311.74 | 328.58 | 385.06 | 465.0 | - | - | - | - | - | - |
Water (kg) | 263.67 | 309.20 | 373.75 | 266.57 | 312.40 | 377.25 | 245.98 | 289.67 | 352.21 | 245.98 | 289.67 | 352.21 |
Water/binder | 0.71 | 0.71 | 0.71 | 0.81 | 0.81 | 0.81 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
Air entraining agent (kg) | - | - | - | - | - | - | - | - | - | 1.38 | 1.63 | 1.98 |
Sand (kg) | 1561.03 | 1372.97 | 1106.38 | 1554.87 | 1366.61 | 1100.20 | 1598.52 | 1411.79 | 1144.43 | 1598.52 | 1411.79 | 1144.43 |
Mortar Type/Property | LBM 1-2-12 | LBM 1-2-9 | LBM 1-2-6 | LM 1-4 | LM 1-3 | LM 1-2 | CM 1-4 | CM 1-3 | CM 1-2 | ACM 1-4 | ACM 1-3 | ACM 1-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Consistency (cm) | 210 | 160 | 130 | 210 | 170 | 135 | 210 | 140 | 105 | 210 | 170 | 110 |
Density (g/cm3) | 1.55 | 1.67 | 1.74 | 1.42 | 1.50 | 1.66 | 1.86 | 1.87 | 1.92 | 1.79 | 1.83 | 1.85 |
Pore content (%) | 0.6 | 1.7 | 4.8 | 2 | 1.5 | 4.5 | 1.3 | 3.3 | 6.9 | 4.3 | 9.6 | 12 |
Mortar Type/Property | LBM 1-2-12 | LBM 1-2-9 | LBM 1-2-6 | LM 1-4 | LM 1-3 | LM 1-2 | CM 1-4 | CM 1-3 | CM 1-2 | ACM 1-4 | ACM 1-3 | ACM 1-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Flexural strength (MPa) | 1.2 ± 0.1 | 1.3 ± 0.1 | 1.6 ± 0.1 | 1.0 ± 0.1 | 1.1 ± 0.1 | 1.3 ± 0.1 | 6.1 ± 0.4 | 6.3 ± 0.4 | 6.4 ± 0.5 | 4.7 ± 0.4 | 4.9 ± 0.4 | 5.6 ± 0.5 |
Compressive strength (MPa) | 4.0 ± 0.2 | 4.7 ± 0.2 | 5.2 ± 0.3 | 1.8 ± 0.1 | 2.3 ± 0.2 | 2.6 ± 0.2 | 30.3 ± 2.1 | 30.9 ± 2.4 | 31.3 ± 2.9 | 26.8 ± 2.1 | 27.2 ± 1.9 | 28.3 ± 2.3 |
Flexural strength after exposure to freeze/thaw cycles (MPa) | - | - | - | - | - | - | 4.7 ± 0.4 | 5.0 ± 0.4 | 5.3 ± 0.5 | 4.1 ± 0.3 | 4.2 ± 0.4 | 5.1 ± 0.5 |
Compressive strength after exposure to freeze/thaw cycles (MPa) | - | - | - | - | - | - | 23.1 ± 1.9 | 23.8 ± 2.0 | 26.8 ± 2.3 | 22.5 ± 2.3 | 23.4 ± 2.1 | 26.3 ± 2.1 |
Ratio of flexural strength after and before exposure to freeze/thaw cycles | - | - | - | - | - | - | 0.77 | 0.79 | 0.83 | 0.87 | 0.86 | 0.91 |
Ratio of compressive strength after and before exposure to freeze/thaw cycles | - | - | - | - | - | - | 0.76 | 0.77 | 0.86 | 0.84 | 0.86 | 0.93 |
Sample/Amount of Pores of a Specific Size (%) | Pore Diameter Range (µm) | Total Porosity (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−32 | 32–16 | 16–8 | 8–4 | 4–3 | 3–2 | 2–1 | 1–0.5 | 0.5–0.25 | 0.25–0.12 | 0.12–0.064 | 0.064–0.032 | 0.032–0.016 | 0.016–0.008 | 0.008–0.006 | - | |
LBM 1-2-12 | 2.0 | 0.2 | 0.2 | 0.2 | 0.2 | 0.5 | 10.9 | 39.7 | 24.1 | 9.0 | 4.3 | 4.0 | 2.9 | 1.4 | 0.4 | 32.4 |
LBM 1-2-9 | 2.2 | 0.1 | 0.1 | 0.1 | 0.0 | 0.3 | 11.3 | 48.2 | 18.5 | 7.4 | 4.4 | 3.9 | 2.5 | 0.9 | 0.1 | 36.2 |
LBM 1-2-6 | 3.4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | 15.4 | 45.7 | 15.5 | 7.5 | 4.6 | 4.3 | 2.1 | 0.6 | 0.1 | 43.8 |
LM 0-1-4 | 2.4 | 0.1 | 0.2 | 0.6 | 2.0 | 5.4 | 10.9 | 40.5 | 21.2 | 6.9 | 3.7 | 3.8 | 2.2 | 0.1 | 0.0 | 33.7 |
LM 0-1-3 | 2.1 | 0.2 | 0.2 | 0.2 | 0.7 | 20.9 | 52.5 | 10.4 | 4.8 | 2.7 | 3.0 | 2.0 | 0.3 | 0.0 | 0.0 | 40.6 |
LM 0-1-2 | 1.9 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 17.6 | 56.0 | 9.9 | 4.7 | 2.9 | 3.9 | 2.4 | 0.3 | 0.0 | 46.1 |
CM 0-1-4 | 4.3 | 0.2 | 0.5 | 3.1 | 5.9 | 14.6 | 15.1 | 11.3 | 12.2 | 10.2 | 7.2 | 6.3 | 5.5 | 3.2 | 0.4 | 28.9 |
CM 0-1-3 | 2.1 | 0.1 | 0.2 | 0.2 | 0.4 | 3.0 | 21.8 | 13.6 | 15.1 | 13.3 | 10.5 | 8.6 | 6.8 | 3.8 | 0.5 | 28.7 |
CM 0-1-2 | 3.7 | 0.1 | 0.2 | 0.3 | 0.2 | 0.6 | 10.2 | 23.5 | 14.4 | 13.7 | 10.3 | 8.6 | 7.1 | 6.0 | 1.1 | 29.0 |
ACM 0-1-4 | 8.1 | 0.5 | 0.6 | 1.8 | 1.8 | 7.5 | 22.9 | 11.2 | 9.8 | 11.1 | 10.8 | 7.1 | 3.9 | 2.3 | 0.6 | 30.1 |
ACM 0-1-3 | 3.7 | 0.4 | 0.3 | 0.3 | 0.6 | 2.7 | 31.4 | 16.2 | 7.4 | 9.8 | 9.7 | 7.1 | 5.0 | 4.5 | 0.9 | 33.6 |
ACM 0-1-2 | 4.6 | 0.5 | 0.6 | 0.9 | 1.0 | 5.6 | 37.3 | 8.3 | 7.7 | 8.9 | 7.9 | 6.2 | 5.2 | 4.7 | 0.6 | 35.6 |
Mortar Type/Pore Content | LBM 1-2-12 | LBM 1-2-9 | LBM 1-2-6 | LM 1-4 | LM 1-3 | LM 1-2 | CM 1-4 | CM 1-3 | CM 1-2 | ACM 1-4 | ACM 1-3 | ACM 1-2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Closed (%) | 0.99 | 1.40 | 0.46 | 0.93 | 0.85 | 1.62 | 1.75 | 1.25 | 1.83 | 0.63 | 3.7 | 1.48 |
Open (%) | 0.04 | 0.97 | 0.06 | 2.86 | 0.37 | 2.81 | 3.88 | 3.55 | 3.34 | 11.27 | 4.96 | 5.49 |
Total (%) | 1.03 | 2.38 | 0.52 | 3.79 | 1.21 | 4.43 | 5.64 | 4.79 | 5.17 | 12.0 | 8.66 | 6.97 |
Pore connectivity (1/mm3) | 1432 | 3749 | 299 | 2374 | 1474 | 4746 | 2832 | 6235 | 7521 | 5159 | 775 | 1160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netinger Grubeša, I.; Marković, B.; Vračević, M.; Tunkiewicz, M.; Szenti, I.; Kukovecz, Á. Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars. Materials 2019, 12, 3196. https://doi.org/10.3390/ma12193196
Netinger Grubeša I, Marković B, Vračević M, Tunkiewicz M, Szenti I, Kukovecz Á. Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars. Materials. 2019; 12(19):3196. https://doi.org/10.3390/ma12193196
Chicago/Turabian StyleNetinger Grubeša, Ivanka, Berislav Marković, Martina Vračević, Maria Tunkiewicz, Imre Szenti, and Ákos Kukovecz. 2019. "Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars" Materials 12, no. 19: 3196. https://doi.org/10.3390/ma12193196
APA StyleNetinger Grubeša, I., Marković, B., Vračević, M., Tunkiewicz, M., Szenti, I., & Kukovecz, Á. (2019). Pore Structure as a Response to the Freeze/Thaw Resistance of Mortars. Materials, 12(19), 3196. https://doi.org/10.3390/ma12193196