Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers
Abstract
:1. Introduction
2. Materials and Work Methods
2.1. Materials Tested
2.1.1. Resin and Glass
2.1.2. Steel Reinforcement
2.1.3. Beam Geometry
2.2. Work Methods
2.2.1. Test Method
2.2.2. Numerical Analysis
3. Test Results
4. Discussion
- -
- For the cross sectional area of the tensile resistant material Asteel joined to glass, the ratio S was used:
- -
- The ratio R, describing the increase of the failure load compared with the limit elastic load:
- -
- The ratio T, describing the vertical displacement at failure compared with the displacement at the elastic limit:
- -
- The ratio between the failure load and the load at the elastic limit:
- -
- The ratio between Kpost-el (stiffness in the post-elastic phase) and Kel (stiffness in the elastic field):Kel is the slope of the line in elastic phase. This was calculated from the load vs. displacement diagram; Kpost-el is the stiffness in the post-elastic phase and was evaluated as the slope of the straight line between post-elastic load and failure load.
- -
- Finally, the ratio between the failure load and the post-elastic load:
4.1. Results in Terms of Failure Load
4.2. Results in Terms of Energy Dissipated
4.3. Numerical Analysis Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Galuppi, L.; Royer-Carfagni, G. Enhanced effective thickness of multi-layered laminated glass. Compos. Part B Eng. 2014, 64, 202–213. [Google Scholar] [CrossRef]
- Castori, G.; Speranzini, E. Structural analysis of failure behavior of laminated glass. Compos. Part B Eng. 2017, 125, 89–99. [Google Scholar] [CrossRef]
- Briccoli Bati, S.; Ranocchiai, G.; Reale, C.; Rovero, L. Time-dependent behavior of laminated glass. J. Mater. Civ. Eng. 2010, 22, 389–396. [Google Scholar] [CrossRef]
- Andreozzi, L.; Briccoli Bati, S.; Fagone, M.; Ranocchiai, G.; Zulli, F. Dynamic torsion tests to characterize the thermo-viscoelastic properties of polymeric interlayers for laminated glass. Constr. Build. Mater. 2014, 65, 1–13. [Google Scholar] [CrossRef]
- Bedon, C.; Amadio, C. Numerical buckling analysis of geometrically imperfect glass panels under biaxial in-plane compressive/tensile loads. Eng. Struct. 2014, 6, 165–176. [Google Scholar] [CrossRef]
- Galuppi, L.; Massimiani, S.; Royer-Carfagni, G. Buckling phenomena in double curved cold-bent glass. Int. J. Nonlinear Mech. 2014, 64, 70–84. [Google Scholar] [CrossRef]
- Belis, J.; Bedon, C.; Louter, C.; Amadio, C.; Van Impe, R. Experimental and analytical assessment of lateral torsional buckling of laminated glass beams. Eng. Struct. 2013, 51, 295–305. [Google Scholar] [CrossRef]
- Galuppi, L.; Royer-Carfagni, G. The post-breakage response of laminated heat-treated glass under in plane and out of plane loading. Compos. Part B Eng. 2014, 64, 202–213. [Google Scholar] [CrossRef]
- Pisano, G.; Royer-Carfagni, G. A micromechanical derivation of the macroscopic strength statistics for pristine or corroded/abraded float glass. J. Am. Ceram. Soc. 2017, 37, 4197–4206. [Google Scholar] [CrossRef]
- Foraboschi, P. Analytical modeling to predict thermal shock failure and maximum temperature gradients of a glass panel. Mater. Des. 2017, 134, 301–319. [Google Scholar] [CrossRef]
- Foraboschi, P. Experimental characterization of non-linear behaviour of monolithic glass. Int. J. Nonlinear Mech. 2014, 67, 352–370. [Google Scholar] [CrossRef]
- Martens, K.; Caspeele, R.; Belis, J. Development of composite glass beams—A review. Eng. Struct. 2015, 101, 1–15. [Google Scholar] [CrossRef]
- Nielsen, J.H.; Olesen, J.F. Mechanically reinforced glass beams. Struct. Eng. Mech. Comput. 2008, 3, 1707–1712. [Google Scholar]
- Belis, J.; Callewaert, D.; Delincé, D.; Van Impe, R. Experimental failure investigation of a hybrid glass/steel beam. Eng. Fail. Anal. 2009, 16, 1163–1173. [Google Scholar] [CrossRef]
- Louter, C.; Belis, J.; Veer, F.; Lebet, J.P. Structural response of SG-laminated reinforced glass beams; experimental investigations on the effects of glass type, reinforcement percentage and beam size. Eng. Struct. 2012, 36, 292–301. [Google Scholar] [CrossRef]
- Slivanský, M. Theoretical verification of the reinforced glass beams. Procedia Eng. 2012, 40, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Netusil, M.; Eliasova, M. Design of the composite steel-glass beams with semi-rigid polymer adhesive joint. J. Civ. Eng. Archit. 2012, 6, 1059–1069. [Google Scholar]
- Agnetti, S.; Speranzini, E. Hybrid steel-fiber reinforced glass beams—Experimental and numerical analysis. In Challenging Glass 4 and Cost Action TU0905 Final Conference; CRC Press: Boca Raton, FL, USA, 2014; pp. 211–218. [Google Scholar]
- Speranzini, E.; Agnetti, S. Post-cracking behaviour of reinforced glass beams. In COST Action TU0905 Mid-Term Conference on Structural Glass; CRC Press: Boca Raton, FL, USA, 2013; pp. 285–292. [Google Scholar]
- Valarinho, L.; Correia, J.R.; Branco Fernando, A. Experimental study on the flexural behaviour of multi-span transparent glass–GFRP composite beams. Constr. Build. Mater. 2013, 49, 1041–1053. [Google Scholar] [CrossRef]
- Speranzini, E.; Agnetti, S. Flexural performance of hybrid beams made of glass and pultruded GFRP. Constr. Build. Mater. 2015, 94, 249–261. [Google Scholar] [CrossRef]
- Premrov, M.; Zlatinek, M.; Strukelj, A. Experimental analysis of load-bearing timber-glass I-beam. Constr. Unique Build. Struct. 2014, 4, 11–20. [Google Scholar]
- Blyberg, L.; Lang, M.; Lundstedt, K.; Schander, M.; Serrano, E.; Silfverhielm, M.; Stalhandske, C. Glass, timber and adhesive joints—Innovative load bearing building components. Constr. Build. Mater. 2014, 55, 470–478. [Google Scholar] [CrossRef]
- Freytag, B. Glass-Concrete Composite Technology. Struct. Eng. Int. 2004, 14, 111–117. [Google Scholar] [CrossRef]
- Veer, F.A.; Riemslag, A.C.; Ting, C.N. Structurally efficient glass laminated composite beams. In Proceedings of the Glass Processing Days-2001, Tampere, Finland, 18–21 June 2001; pp. 363–367. [Google Scholar]
- Hildebrand, J.; Werner, F. Glass-plastic hybrid construction. Mech. Constr. 2006, 140, 801–808. [Google Scholar]
- Cagnacci, E.; Orlando, M.; Spinelli, P. Experimental campaign and numerical simulation of the behavior of reinforced glass beams. In Proceedings of the Glass Performance Days-2009, Tamper, Finland, 12–15 June 2009; pp. 484–487. [Google Scholar]
- Antonelli, A.; Cagnacci, E.; Giordano, S.; Orlando, M.; Spinelli, P. On the mechanical behaviour of C-FRP reinforced glass beams. In Proceedings of the 23th ATIV International Conference Adding Value to Glass, Parma, Italy, 20 September 2008; pp. 64–71. [Google Scholar]
- Louter, P.C.; Nielsen, J.H.; Belis, J. Exploratory experimental investigations on post-tensioned structural glass beams. In Structures and Architecture: Concepts, Applications and Challenges; Cruz, P.J.D.S., Ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 358–365. [Google Scholar] [Green Version]
- Corradi, M.; Borri, A.; Castori, G.; Speranzini, E. Fully reversible reinforcement of softwood beams with unbounded composite plates. Compos. Struct. 2016, 149, 54–68. [Google Scholar] [CrossRef]
- Speranzini, E.; Agnetti, S.; Corradi, M. Experimental analysis of adhesion phenomena in fibre-reinforced glass structures. Compos. Part B Eng. 2016, 101, 155–166. [Google Scholar] [CrossRef]
- Bilyeu, B.; Brostow, W.; Menard, K.P. Epoxy thermosets and their applications I: Chemical structures and applications. J. Mater. Educ. 1999, 21, 281–286. [Google Scholar]
- Bilyeu, B.; Brostow, W.; Menard, K.P. Separation of gelation from vitrification in curing of a fiber-reinforced epoxy composite. Polym. Compos. 2002, 23, 1111–1119. [Google Scholar] [CrossRef]
- EN 572. Glass in Building—Basic Soda Lime Silicate Glass Products. Definitions and General Physical and Mechanical Properties; ISO: Geneva, Switzerland, 2012. [Google Scholar]
- UNI EN 1288. Glass in Building—Determination of the Bending Strength of Glass—Part 3: Test with Specimens Supported at Two Points; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- ANSYS Fluent Theory Guide; ANSYS/FLUENT Release Version 14; ANSYS Inc.: Canonsburg, PA, USA, 2013.
Type | Epoxy, bi-Component |
---|---|
Density (g/cm3) | 1.08 |
Consistence | Liquid |
Colour | Transparent |
Pot-Life a 20 °C (mass of 500 g) (min) | 20 |
Time of complete gardening at 20 °C (days) | 7 |
Compressive strength (MPa) | 50 |
Flexural strength (MPa) | 30 |
Young’s modulus (MPa) | 1760 |
Mechanical Properties | UHTSS Fibers | Stainless Fibers |
---|---|---|
Tensile strength (MPa) | 2950 | 1470 |
Arrangement | Unidirectional | Unidirectional |
Cord Diameter (mm) | 1 | 1 |
Cord Density (cord/cm) | - | 10 |
Cord Failure Load (kN) | 0.8 | 0.7 |
Weight Density (kg/m2) | 1.97 | 2.2 |
Young’s modulus (GPa) | 206 | 73.5 |
Tensile elongation at failure (%) | 2.3 | 2.0 |
Beam Series | b (mm) | h (mm) | l (mm) | L (mm) | No. of Specimens | Steel Fiber Type | Reinforcement Cross Sectional Area Asteel (mm2) |
---|---|---|---|---|---|---|---|
Beam 1-a | 16 | 100 | 1100 | 1000 | 5 | Un-reinforced | - |
Beam 1-b | 16 | 100 | 1100 | 1000 | 5 | Stainless steel | 0.475 |
Beam 1-c | 16 | 100 | 1100 | 1000 | 5 | UHTSS steel | 0.475 |
Beam 2-a | 8 | 100 | 1100 | 1000 | 3 | Un-reinforced | - |
Beam 2-b | 8 | 100 | 1100 | 1000 | 3 | UHTSS steel | 0.285 |
Beam 3 | 24 | 100 | 1100 | 1000 | 3 | UHTSS steel | 0.475 |
Beam 4-a | 48 | 120 | 1100 | 1000 | 3 | UHTSS steel | 18.24 |
Beam 4-b | 48 | 120 | 1100 | 1000 | 2 | UHTSS steel | 27.36 |
Beam 5-a | 40 | 100 | 1000 | 900 | 1 | UHTSS steel | 7.6 |
Beam 5-b | 40 | 100 | 1000 | 900 | 1 | UHTSS steel | 15.2 |
Beam 5-c | 40 | 100 | 1000 | 900 | 1 | UHTSS steel | 22.8 |
Beam 5-d | 40 | 100 | 1000 | 900 | 1 | Stainless steel | 19.2 |
Beam 5-e | 40 | 100 | 1000 | 900 | 1 | Stainless steel | 28.8 |
Beam 6 | 48 | 200 | 3000 | 2800 | 1 | UHTSS steel | 27.36 |
Beam Series | Elastic Limit Load Fel (kN) | Limit Elastic Displacem. Del (mm) | Post-Elastic Load Fpost-el (kN) | Post-elastic Displacement Dpost-el (mm) | Failure Load Ffail (kN) | Displacement at Failure Load Dfail (mm) | Kel × 106 (N/m) | Kpost-el × 106 (N/m) |
---|---|---|---|---|---|---|---|---|
Beam 1-a | 6.51 * | 2.57 | - | - | 6.51 | 2.57 | 2.54 | - |
Beam 1-b | 7.25 | 3.29 | 2.93 | 6.34 | 5.03 | 13.2 | 2.27 | 0.38 |
Beam 1-c | 5.55 | 2.78 | 2.90 | 5.11 | 3.89 | 8.63 | 2.11 | 0.31 |
Beam 2-a | 2.46 * | 2.30 | - | - | 2.46 | 2.30 | 1.08 | - |
Beam 2-b | 2.56 | 1.93 | 1.20 | 4.46 | 1.41 | 7.50 | 1.33 | 0.10 |
Beam 3 | 9.54 | 2.96 | 3.20 | 7.04 | 5.11 | 15.5 | 3.24 | 0.23 |
Beam 4-a | 24.5 | 2.32 | 16.6 | 3.20 | 31.4 | 16.5 | 10.8 | 1.12 |
Beam 4-b | 30.6 | 3.33 | 19.5 | 4.40 | 39.2 | 16.9 | 9.18 | 1.58 |
Beam 5-a | 17.5 | 1.54 | 9.31 | 3.19 | 16.0 | 15.5 | 11.4 | 0.54 |
Beam 5-b | 18.8 | 3.03 | 14.2 | 4.00 | 22.6 | 10.8 | 6.21 | 1.23 |
Beam 5-c | 13.8 | 1.30 | 8.84 | 2.14 | 26.2 | 13.0 | 10.6 | 1.61 |
Beam 5-d | 17.5 | 2.74 | 13.7 | 3.57 | 26.3 | 12.6 | 6.41 | 1.39 |
Beam 5-e | 19.9 | 1.97 | 12.2 | 3.43 | 22.5 | 11.0 | 10.1 | 1.36 |
Beam 6 | 23.5 | 5.71 | 5.80 | 10.5 | 25.3 | 67.9 | 4.12 | 0.34 |
Beam Series | S (%) | R (%) | T (%) | V (%) | J (%) | Q (%) |
---|---|---|---|---|---|---|
Beam 1-a | - | - | - | - | - | - |
Beam 1-b | 0.03 | −30.6 | 301.2 | 40.4 | 16.7 | 171.7 |
Beam 1-c | 0.09 | −29.9 | 210.4 | 52.3 | 14.7 | 134.1 |
Beam 2-a | - | - | - | - | - | - |
Beam 2-b | 0.10 | −44.9 | 288.6 | 46.9 | 7.5 | 117.5 |
Beam 3 | 0.06 | −46.4 | 423.6 | 33.5 | 7.1 | 159.7 |
Beam 4-a | 0.93 | 28.2 | 611.1 | 67.8 | 10.4 | 189.2 |
Beam 4-b | 1.40 | 28.1 | 407.5 | 63.7 | 17.2 | 201.0 |
Beam 5-a | 0.56 | −8.6 | 906.6 | 53.2 | 4.76 | 171.9 |
Beam 5-b | 1.12 | 20.2 | 256.4 | 75.5 | 19.8 | 159.2 |
Beam 5-c | 1.68 | 89.9 | 900.0 | 64.1 | 15.2 | 296.4 |
Beam 5-d | 0.50 | 50.3 | 359.9 | 78.3 | 21.7 | 192.0 |
Beam 5-e | 0.76 | 13.1 | 458.4 | 61.3 | 13.5 | 184.2 |
Beam 6 | 0.84 | 7.7 | 1089 | 24.7 | 8.24 | 436.4 |
Beam Series | Eel (J) | Ep (J) | Ef (J) | Ep + Ef (J) | Et (J) | Λel (%) |
---|---|---|---|---|---|---|
Beam 1-a | 8.36 | - | - | - | 8.36 | 100 |
Beam 1-b | 11.9 | 15.5 | 27.3 | 42.8 | 54.8 | 21.8 |
Beam 1-c | 7.71 | 9.85 | 12.0 | 21.8 | 29.5 | 26.1 |
Beam 2-a | 2.83 | - | - | - | 2.83 | 100 |
Beam 2-b | 2.47 | 4.49 | 3.64 | 8.13 | 10.6 | 23.3 |
Beam 3 | 14.1 | 26.0 | 35.0 | 60.9 | 75.1 | 18.8 |
Beam 4-a | 28.4 | 18.2 | 319.1 | 337.3 | 365.7 | 7.77 |
Beam 4-b | 50.9 | 27.0 | 366.7 | 393.4 | 444.3 | 11.4 |
Beam 5-a | 13.5 | 22.1 | 156.2 | 178.3 | 191.8 | 7.04 |
Beam 5-b | 28.5 | 16.0 | 125.7 | 141.7 | 170.3 | 16.8 |
Beam 5-c | 8.96 | 9.55 | 189.9 | 199.5 | 208.4 | 4.30 |
Beam 5-d | 24.0 | 13.0 | 180.1 | 193.0 | 217.1 | 11.1 |
Beam 5-e | 19.6 | 23.4 | 132.0 | 155.4 | 175.0 | 11.2 |
Beam 6 | 67.2 | 69.7 | 893.0 | 962.7 | 1029.9 | 6.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradi, M.; Speranzini, E. Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers. Materials 2019, 12, 231. https://doi.org/10.3390/ma12020231
Corradi M, Speranzini E. Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers. Materials. 2019; 12(2):231. https://doi.org/10.3390/ma12020231
Chicago/Turabian StyleCorradi, Marco, and Emanuela Speranzini. 2019. "Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers" Materials 12, no. 2: 231. https://doi.org/10.3390/ma12020231
APA StyleCorradi, M., & Speranzini, E. (2019). Post-Cracking Capacity of Glass Beams Reinforced with Steel Fibers. Materials, 12(2), 231. https://doi.org/10.3390/ma12020231