Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Neural Network Learning Method Using a 3D VRRAM Synapse
2.2. 3D VRRAM Synapse Operation Mechanism
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al. TruNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nat. Lett. 2015, 521, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Kwon, H.; Kim, B.; Lee, W.; Wee, D.; Choi, H.; Park, B.; Lee, J.; Kim, Y. 3-D Stacked Synapse Array Based on Charge-Trap Flash Memory for Implementation of Deep Neural Networks. IEEE Trans. Electron. Device. 2018, 66, 420–427. [Google Scholar] [CrossRef]
- Burr, G.W.; Shelby, R.M.; Nolfo, C.; Jang, J.W.; Shenoy, R.S.; Narayanan, P.; Virwani, K.; Giacometti, E.U.; Kurdi, B.; Hwang, H. Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 697–700. [Google Scholar]
- Yu, S.; Gao, B.; Fang, Z.; Yu, H.; Kang, J.; Wong, H. A Neuromorphic Visual System Using RRAM Synaptic Devices with Sub-pJ Energy and Tolerance to Variability: Experimental Characterization and Large-Scale Modeling. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–12 December 2012; pp. 239–242. [Google Scholar]
- Deng, Y.; Chen, H.-Y.; Gao, B.; Yu, S.; Wu, S.-C.; Zhao, L.; Chen, B.; Jiang, Z.; Liu, X.; Hou, T.-H.; et al. Design and Optimization Methodology for 3D RRAM Arrays. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 9–11 December 2013. [Google Scholar]
- Choi, S.; Sun, W.; Shin, H. Analysis of Cell Variability Impact on a 3-D Vertical RRAM (VRRAM) Crossbar Array Using a Modified Lumping Method. IEEE Trans. Electron. Device. 2019, 66, 759–765. [Google Scholar] [CrossRef]
- Choi, S.; Sun, W.; Shin, H. Analysis of Read margin and Write Power Consumption of a 3-D Vertical RRAM (VRRAM) Crossbar Array. IEEE J. Electron. Devices Soc. 2018, 6, 1192–1196. [Google Scholar] [CrossRef]
- Wang, I.; Lin, Y.; Wang, Y.; Hsu, C.; Hou, T. 3D Synaptic Architecture with Ultralow sub-10 fJ Energy per Spike for Neuromorphic Computation. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014; pp. 665–768. [Google Scholar]
- Piccolboni, G.; Molas, G.; Portal, J.M.; Coquand, R.; Bocquet, M.; Garbin, D.; Vianello, E.; Carabasse, C.; Delaye, V.; Pellissier, C.; et al. Investigation of the potentialities of Vertical Resistive RAM (VRRAM) for neuromorphic applications. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 7–9 December 2015; pp. 447–450. [Google Scholar]
- Li, H.; Li, K.; Lin, C.; Hsu, J.; Chiu, W.; Chen, M.; Wu, T.; Sohn, J.; Eryilmaz, S.B.; Shieh, J.; et al. Four-Layer 3D Vertical RRAM Integrated with FinFET as a Versatile Computing Unit for Brain-Inspired Cognitive Information Processing. In Proceedings of the Symposium on VLSI Technology (SOVT), Honolulu, HI, USA, 14–16 June 2016. [Google Scholar]
- Li, Z.; Chen, P.; Xu, H.; Yu, S. Design of Ternary Neural Network With 3-D Vertical RRAM Array. IEEE Trans. Electron Device. 2017, 64, 2721–2727. [Google Scholar] [CrossRef]
- Gao, B.; Bi, Y.; Chen, H.; Liu, R.; Huang, P.; Chen, B.; Liu, L.; Liu, X.; Yu, S.; Wong, H.-S.P.; et al. Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems. ACS Nano 2014, 8, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.; Sun, W.; Kim, B.; Kim, S.; Park, J.; Shin, H. Memristor Neural Network Training with Clock Synchronous Neuromorphic System. Micromachines 2019, 10, 384. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jo, S.; Sun, W.; Shin, H. Analysis of the Memristor-Based Crossbar Synapse for Neuromorphic Systems. J. Nanosci. Nanotechnol. 2019, 19, 6703–6709. [Google Scholar] [CrossRef] [PubMed]
- Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S. A Memristor Device Model. IEEE Electron. Device Lett. 2011, 32, 1436–1438. [Google Scholar] [CrossRef]
- Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E. Generalized Memristive Device SPICE Model and its Application in Circuit Design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 1201–1214. [Google Scholar] [CrossRef]
- Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E. Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013. [Google Scholar]
- Amirsoleimani, A.; Shamsi, J.; Ahmadi, M.; Ahmadi, A.; Alirezaee, S.; Mohammadi, K.; Karami, M.A.; Yakopcic, C.; Kavehei, O.; Al-Sarawie, S. Accurate charge transport model for nanoionic memristive devices. Microelectron. J. 2017, 65, 49–57. [Google Scholar] [CrossRef]
- Pershin, Y.V.; Martinez-Rincon, J.; Di Ventra, M. Memory Circuit Elements: From Systems to Applications. J. Comput. Theor. Nanosci. 2011, 8, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Woo, J.; Padovani, A.; Moon, K.; Kwak, M.; Larcher, L.; Hwang, H. Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications. IEEE Electron. Device Lett. 2017, 38, 1220–1223. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
a1 | 1 × 10−5 | An | 1 × 107 |
a2 | 1 × 10−5 | xp | 0.2 |
b | 2.1 | xn | 0.25 |
Vp | 1 (V) | αp | 7 |
Vn | 1 (V) | αn | 6 |
Ap | 3 × 106 | xo | 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Choi, S.; Kim, B.; Park, J. Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems. Materials 2019, 12, 3451. https://doi.org/10.3390/ma12203451
Sun W, Choi S, Kim B, Park J. Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems. Materials. 2019; 12(20):3451. https://doi.org/10.3390/ma12203451
Chicago/Turabian StyleSun, Wookyung, Sujin Choi, Bokyung Kim, and Junhee Park. 2019. "Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems" Materials 12, no. 20: 3451. https://doi.org/10.3390/ma12203451
APA StyleSun, W., Choi, S., Kim, B., & Park, J. (2019). Three-Dimensional (3D) Vertical Resistive Random-Access Memory (VRRAM) Synapses for Neural Network Systems. Materials, 12(20), 3451. https://doi.org/10.3390/ma12203451