Effect of Phenolic Particles on Mechanical and Thermal Conductivity of Foamed Sulphoaluminate Cement-Based Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Foamed Concrete
2.3. Test Methods
2.3.1. Dry Density Measurement
2.3.2. Compressive Strength Measurement
2.3.3. Water Absorption Measurement
2.3.4. Thermal Conductivity Measurement
2.3.5. Fluidity of the Cement Pastes
2.3.6. Micro-X-ray Computed Tomography (Micro-CT) Measurement
3. Results
3.1. Effect of Water–Cement Ratio on Properties of Foamed Concrete
3.2. Effect of the Dosage of Foaming Agent on Properties of Foamed Concrete
3.3. Effect of Calcium Stearate on Properties of Foamed Concrete
3.4. Effect of Phenolic Particles on Properties of Foamed Concrete
4. Mechanism Analysis of Phenolic-Foamed Concrete
5. Conclusions
- (1)
- The increase in the water–cement ratio and the increase in the amount of the foaming agent will reduce the dry density and compressive strength of the foamed concrete-based material, and the proper amount of the foam stabilizer can effectively stabilize the bubbles, prevent the bubbles from being combined and broken, and reduce the water absorption rate.
- (2)
- When the water–cement ratio is 0.53, the foaming agent dosage is 4–5%, and the foam stabilizer is 1%, the cement slurry is easy to mix, the pore distribution is relatively uniform, and there is no slurry delamination and collapse phenomenon.
- (3)
- The use of phenolic particles instead of cement to prepare foamed concrete not only changes the thermal conductivity of the substrate but also optimizes the pore structure, and the compressive strength is stable while greatly reducing the thermal conductivity. When the substitution of phenolic particles is 20%, the dry density of the foamed concrete reaches the grade B03, and the compressive strength grade reaches B05 [26].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.H.; Provis, J.L.; Reid, A.; Wang, H. Geopolymer foam concrete: An emerging material for sustainable construction. Constr. Build. Mater. 2014, 56, 113–127. [Google Scholar] [CrossRef]
- Huang, Z.M.; Zhang, T.S.; Wen, Z.Y. Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Constr. Build. Mater. 2015, 79, 390–396. [Google Scholar] [CrossRef]
- Ma, C.; Chen, B. Properties of foamed concrete containing water repellents. Constr. Build. Mater. 2016, 123, 106–114. [Google Scholar] [CrossRef]
- Liu, P.; Tang, A.D.; Wang, J.Y.; Ai, C.X.; Zhang, C.; Xian, S.X.; Pan, C.Y. Foam stabilizing mechanism of calcium stearate and its effects on pore structure of foam cement thermal insulation board. J. Cent. South Univ. 2018, 49, 1054–1061. [Google Scholar]
- Pacheco-Torgal, F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014, 51, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Sadineni, S.B.; Madala, S.; Boehm, R.F. Passive building energy savings: A review of building envelope components. Renew. Sustain. Energy Rev. 2011, 15, 3617–3631. [Google Scholar] [CrossRef]
- She, W.; Zhang, Y.S.; Jones, M.R. Using the ultrasonic wave transmission method to study the setting behavior of foamed concrete. Constr. Build. Mater. 2014, 51, 62–74. [Google Scholar]
- Williams Portal, N.; Flansbjer, M.; Zandi, K.; Wlasak, L.; Malaga, K. Bending behaviour of novel textile reinforced concrete-foamed concrete (TRC-FC) sandwich elements. Compos. Struct. 2017, 177, 104–118. [Google Scholar] [CrossRef]
- Akthar, F.K.; Evans, J.R.G. High porosity (> 90%) cementitious foams. Cem. Concr. Res. 2010, 40, 352–358. [Google Scholar] [CrossRef]
- Verdolotti, L.; Maio, E.D.; Lavorgna, M.; Iannace, S.; Nicolais, L. Polyurethane–cement-based foams: Characterization and potential uses. J. Appl. Polym. Sci. 2008, 107, 1–8. [Google Scholar] [CrossRef]
- Sang, G.C.; Zhu, Y.Y.; Yang, G.; Zhang, H.B. Preparation and characterization of high porosity cement-based foam material. Constr. Build. Mater. 2015, 91, 133–137. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R. Mechanical and thermal properties of lightweight geopolymer composites. Cem. Concr. Compos. 2018, 86, 266–272. [Google Scholar] [CrossRef]
- Chen, B.; Liu, N. A novel lightweight concrete-fabrication and its thermal and mechanical properties. Constr. Build. Mater. 2013, 44, 691–698. [Google Scholar] [CrossRef]
- Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Nair, C.P.R. Advances in addition-cure phenolic resins. Prog. Polym. Sci. 2004, 29, 401–498. [Google Scholar] [CrossRef]
- Kim, B.G.; Dai, G.L. Development of microwave foaming method for phenolic insulation foams. J. Mater. Process. Technol. 2008, 201, 716–719. [Google Scholar] [CrossRef]
- Abdalla, M.O.; Ludwick, A.; Mitchell, T. Boron-modified phenolic resins for high performance applications. Polym. Degrad. Stab. 2003, 44, 7353–7359. [Google Scholar] [CrossRef]
- Nambiar, E.K.K.; Ramamurthy, K. Air-pore characterisation of foam concrete. Cem. Concr. Res. 2007, 37, 221–230. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Zhou, T.; He, Y.; Huang, F. Preparation and properties of magnesium phosphate cement foam concrete with H2O2 as foaming agent. Constr. Build. Mater. 2019, 205, 566–573. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Z.Y.; Niu, Y.H.; Li, J.; Zhang, Y.P. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Mater. Des. 2016, 92, 949–959. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Bui, H.H.; Ngo, T.D.; Nguyen, G.D. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Mater. Des. 2017, 130, 103–119. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, Y.; Liu, H.; Xie, D.; Wan, C.; Pan, H.; Jiang, S. Mechanical, thermal and fire performance of an inorganic-organic insulation material composed of hollow glass microspheres and phenolic resin. J. Colloid Interface Sci. 2018, 530, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.; Qingping, G.E.; Chen, H.; Shen, G. Preparation of non-corrosive phenolic foam. New Build. Mater. 2010, 4, 50–61. [Google Scholar]
- Kim, J.; Lee, J.H.; Song, T.H. Vacuum insulation properties of phenolic foam. Int. J. Heat Mass Transf. 2012, 55, 5343–5349. [Google Scholar] [CrossRef]
- Xue, W.T.; Fang, C.Q.; Lei, C.; Li, C.; Cai, W.; Ma, Z.Z. Study on the thermodynamic properties of low density modified foamed cement. New Build. Mater. 2017, 4, 100–102. [Google Scholar]
- Standardization Administration of the People’s Republic of China. Autoclaved Aerated Concrete Blocks; China Standards Press: Beijing, China, 2006. [Google Scholar]
Material | Specific Surface Area (m2/kg) | Standard Consistency (%) | Setting Time (min) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Initial | Final | 1 d | 3 d | 28 d | 1 d | 3 d | 28 d | |||
SAC | 364 | 27.7 | 15 | 20 | 5.1 | 6.1 | 7.3 | 30.9 | 42.7 | 54.8 |
Oxides Chemical Composition | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | K2O | Na2O | TiO2 | SO3 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Wt (%) | 9.60 | 45.16 | 21.64 | 2.45 | 1.28 | 1.38 | 0.17 | 1.03 | 10.73 | 6.35 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yang, Q.; Li, Q.; Chen, H.; Zheng, G.; Cheng, X. Effect of Phenolic Particles on Mechanical and Thermal Conductivity of Foamed Sulphoaluminate Cement-Based Materials. Materials 2019, 12, 3596. https://doi.org/10.3390/ma12213596
Zhang X, Yang Q, Li Q, Chen H, Zheng G, Cheng X. Effect of Phenolic Particles on Mechanical and Thermal Conductivity of Foamed Sulphoaluminate Cement-Based Materials. Materials. 2019; 12(21):3596. https://doi.org/10.3390/ma12213596
Chicago/Turabian StyleZhang, Xiuzhi, Qing Yang, Qinfei Li, Heng Chen, Guofa Zheng, and Xin Cheng. 2019. "Effect of Phenolic Particles on Mechanical and Thermal Conductivity of Foamed Sulphoaluminate Cement-Based Materials" Materials 12, no. 21: 3596. https://doi.org/10.3390/ma12213596
APA StyleZhang, X., Yang, Q., Li, Q., Chen, H., Zheng, G., & Cheng, X. (2019). Effect of Phenolic Particles on Mechanical and Thermal Conductivity of Foamed Sulphoaluminate Cement-Based Materials. Materials, 12(21), 3596. https://doi.org/10.3390/ma12213596