Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes
Abstract
:1. Introduction
1.1. Method Proposed by Ke et al.
1.2. Method Proposed by Esmaeilkhanian et al. and Navarrete-Lopez
1.3. Method Proposed by Solak et al.
1.4. The Use of 2D Images to Represent 3D Phenomenon
1.5. The Aim of the Study
2. Materials
3. Experimental Methodology
3.1. Manufacturing of the Concrete Specimens
3.2. Experimental Phase. Density and Ultrasonic Pulse Velocity
3.3. Image Analysis Phase
3.3.1. Initial Treatment of the Images
3.3.2. Binarizatio
3.3.3. Data Processing of Black and White Matrices
4. Segregation Index Proposed in this Study (SIIA), Obtained via Image Analysis
4.1. Calculation of the Global Aggregate Index (GAI), Calculated for the Whole Surface Analyzed
4.2. Local Aggregate Index (LAI), Calculated for Each Subsection
4.3. Local Absolute Difference (LAD), Calculated for Each Subsection
4.4. Local Distribution Coefficient (LDC) = Average of the Local Absolute Differences
4.5. Segregation Index Obtained via Image Analysis (SIIA)
5. Results and Discussion
5.1. Validation Criteria 1—Density: Experimental Procedure vs. Image Analysis Methodology
5.2. Validation Criteria 2—Segregation Index According to Ke: Experimental Procedure vs. Image Analysis
5.3. Comparing the Proposed Segregation Indexes with Segregation Indexes Proposed by Other Authors
6. Conclusions
- The calculation of densities and segregation indexes with the proposed image analysis method has been shown to be a reliable alternative to the experimental method, since the results obtained with the two methods show little dispersion among themselves;
- In the laboratory procedures, the methods of image analysis were shown as an efficient option for quantifying the proportion of materials of the specimens. During the procedure of image analysis, drying and weighing stages are not necessary, which results in a saving of time in the research;
- With the image analysis method, it becomes possible to section the specimen into a greater number of zones and thus determine a segregation index that is not limited to only the eighths of the specimen. A greater number of sections leads to obtaining a segregation index that is more realistic;
- The new method for the quantification of segregation proposed in this work (SIIA) was shown to be an effective option for the quantification of the phenomenon. In addition, it was shown to be a viable option for cases in which segregation does not occur at the top/bottom of the specimens, once it considers all the data of the section;
- The accuracy of the methods conducted by image analysis depends on a series of factors related to the way in which the data is captured and treated. During the photographing of the sections, good-quality images, the lighting conditions, and a good distinction between the mortar matrix and the coarse aggregates are parameters that must be taken into consideration. During the treatment of images, shadows, voids, and noise make it difficult to classify each pixel as “aggregate” or “mortar”. At this point, a small part of the data inevitably ends up being lost, and that is reflected as the difference between SIKe and SIKe AI;
- The comparative study carried out with the UPV shows values consistent with the data obtained by image analysis. The increase in densities of the lower eighths due to the phenomenon of segregation caused an increase in speeds. This method presented the lowest correlations when compared with the other methods, although it has been shown to be the fastest method for determining the segregation index.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LWA | lightweight aggregate |
LWAC | lightweight aggregate concretes |
SIKe | segregation index proposed by Ke [27,28] |
SIKe IA | segregation index proposed by Ke, obtained via image analysis |
SINavarrete | segregation index proposed by Navarrete et al. [33] |
SIIA | segregation index proposed in this paper, using image analysis data |
SIUVP | segregation index proposed by Solak et al. [39], using ultrasonic velocities data |
GAI | Global Aggregate Index (determination of SIIA) |
number of elements (pixels) classified as aggregates, found in a complete concrete cross-section (determination of SIIA) | |
number of elements (pixels) classified as mortar, found in a complete concrete cross-section (determination of SIIA) | |
LAI | Local Aggregate Index (determination of SIIA) |
number of elements (pixels) classified as aggregates, found in a concrete subsection “i” (determination of SIIA) | |
number of elements (pixels) classified as mortar, found in a concrete subsection “i” (determination of SIIA) | |
LDC | Local Distribution Coefficient (determination of SIIA) |
Appendix A. Recommendations for Better Data Collection during Photography
Appendix A.1. Alignment between Samples and the Camera Lens Axis
Appendix A.2. Shoot both Halves at the Same Time
Appendix A.3. Highlight one of the Material Fractions using Permanent Markers
Appendix A.4. Moisten the Surface Before Shooting
Appendix A.5. Use White Cement
References
- Yu, Q.L.; Spiesz, P.; Brouwers, H.J.H. Ultra-lightweight concrete: Conceptual design and performance evaluation. Cem. Concr. Compos. 2015, 61, 18–28. [Google Scholar] [CrossRef]
- Hwang, C.L.; Hung, M.F. Durability design and performance of self-consolidating lightweight concrete. Constr. Build. Mater. 2005, 19, 619–626. [Google Scholar] [CrossRef]
- Sari, D.; Pasamehmetoglu, A.G. The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cem. Concr. Res. 2005, 35, 936–942. [Google Scholar] [CrossRef]
- Rossignolo, J.A.; Agnesini, M.V.C.; Morais, J.A. Properties of high-performance LWAC for precast structures with Brazilian lightweight aggregates. Cem. Concr. Compos. 2003, 25, 77–82. [Google Scholar] [CrossRef]
- Chen, H.J.; Wu, K.C.; Tang, C.W.; Huang, C.H. Engineering Properties of Self-Consolidating Lightweight Aggregate Concrete and Its Application in Prestressed Concrete Members. Sustainability 2018, 10, 142. [Google Scholar] [CrossRef]
- Pla, C.; Tenza-Abril, A.J.; Valdes-Abellan, J.; Benavente, D. Influence of microstructure on fluid transport and mechanical properties in structural concrete produced with lightweight clay aggregates. Constr. Build. Mater. 2018, 171, 388–396. [Google Scholar] [CrossRef]
- Naser, M.Z. Properties and material models for common construction materials at elevated temperatures. Constr. Build. Mater. 2019, 215, 192–206. [Google Scholar] [CrossRef]
- The European Commission. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off. J. Eur. Union. 2018. Available online: http://data.europa.eu/eli/dir/2018/844/oj (accessed on 20 October 2019).
- Real, S.; Gomes, M.G.; Moret Rodrigues, A.; Bogas, J.A. Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings. Constr. Build. Mater. 2016, 121, 460–470. [Google Scholar] [CrossRef]
- Álavarez Palacios, G.; Saez Bravo, E. Hormigón Ligero: Aspectos Técnicos y Estéticos; Universidad Politécnica de Valencia: Valencia, Spain, 2012; Volume 148. [Google Scholar]
- Rossignolo, J.A. Concreto Leve de Alto Desempenho Modificado Com SB Para Pré-Fabricados Esbeltos–Dosagem, Produção, Propriedades e microestrutura; Universidade de São Paulo: Sao Paulo, Brazil, 2003. [Google Scholar] [CrossRef]
- Solak, A.; Tenza-Abril, A.; Saval, J.; García-Vera, V. Effects of Multiple Supplementary Cementitious Materials on Workability and Segregation Resistance of Lightweight Aggregate Concrete. Sustainability 2018, 10, 4304. [Google Scholar] [CrossRef]
- Broomfield, J.P. Corrosion of Steel in Concrete; Wiley-VCH: Weinheim, Germany, 2011; pp. 633–647. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; García-Vera, V.E.; Lanzón, M. New insights on the segregation due to manufacture conditions of Lightweight Aggregate Concretes. In Proceedings of the SynerCrete’18 Interdisciplinary Approaches for Cement-Based Materials and Structural Concrete. Synergizing Expertise Bridging Scales of Space and Time, Funchal, Portugal, 24–26 October 2018; Funchal, M.A., Dirk, S., Benboudjema, F., Jędrzejewska, A., Madeira, I., Eds.; RILEM Publications, S.A.R.L.: Paris, France, 2018; pp. 273–278. [Google Scholar]
- Solak, A.M. El Fenómeno de la Segregación en Hormigones Ligeros. Análisis Mediante Procesamiento de Imágenes y Estudio Ultrasónico; Universidad de Alicante: Alicante, Spain, 2017. [Google Scholar] [CrossRef]
- ACI Committee 238. Report on Measurements of Workability and Rheology of Fresh Concrete; American Concrete Institutuin: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Solak, A.M.; Tenza-Abril, A.J. Compressive Strength Variations in Lightweight Aggregate Concrete Samples Affected by Segregation Caused by Excessive Vibration. Key Eng. Mater. 2019, 821, 493–499. [Google Scholar] [CrossRef]
- Panesar, D.K.K.; Shindman, B. The effect of segregation on transport and durability properties of self consolidating concrete. Cem. Concr. Res. 2012, 42, 252–264. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Wang, X.; Monteiro, P.J.M. 2D image analysis method for evaluating coarse aggregate characteristic and distribution in concrete. Constr. Build. Mater. 2016, 127, 30–42. [Google Scholar] [CrossRef]
- European Union–Brite EuRam I.I.I. EuroLightCon 1998, LWAC Material Properties—State of the Art. Econ. Design Construct. Light Weight Aggreg. Concr. 1998, 47–48. [Google Scholar]
- Newman, J.B. Properties of structural lightweight aggregate concrete. Struct. Light. Aggreg. Concr. 1993, 19–44. [Google Scholar]
- De Larrard, F.; Belloc, A. L’influence du granulat sur la résistance à la compression des bétons. Bull. Des. Lab. Des. Ponts. Chauss{é}es 1999, 41–52. [Google Scholar]
- Stock, A.F.; Hannantt, D.J.; Williams, R.I.T. The effect of aggregate concentration upon the strength and modulus of elasticity of concrete. Mag. Concr. Res. 1979, 31, 225–234. [Google Scholar] [CrossRef]
- Ke, Y.; Ortola, S.; Beaucour, A.; Cabrillac, R.; Dumontet, H. Influence of aggregates on mechanical behavior of lightweight aggregate concrete: experimental characterization and modeling. First Euro-Mediterr. Adv. Geomater. Struct. 2006. [Google Scholar]
- ACI Committee 213. Guide for Structural Lightweight-Aggregate Concrete; Reported by ACI Committee 213; American Concrete Institute: Farmington Hills, MI, USA, 2003. [Google Scholar]
- Ke, Y.; Beaucour, A.L.L.; Ortola, S.; Dumontet, H.; Cabrillac, R. Influence of volume fraction and characteristics of lightweight aggregates on the mechanical properties of concrete. Constr. Build. Mater. 2009, 23, 2821–2828. [Google Scholar] [CrossRef]
- Ke, Y. Caractérisation du Comportement Mécanique des Bétons de Granulats légers: Expérience et Modélisation; Université de Cergy-Pontoise: Cergy, France, 2008. [Google Scholar]
- Barbosa, F.S.; Beaucour, A.L.; Farage, M.C.R.; Ortola, S. Image processing applied to the analysis of segregation in lightweight aggregate concretes. Constr. Build. Mater. 2011, 25, 3375–3381. [Google Scholar] [CrossRef]
- Esmaeilkhanian, B.; Khayat, K.H.; Yahia, A.; Feys, D. Effects of mix design parameters and rheological properties on dynamic stability of self-consolidating concrete. Cem. Concr. Compos. 2014, 54. [Google Scholar] [CrossRef]
- Kwasny, J.; Sonebi, M.; Taylor, S.E.; Bai, Y.; Owens, K.; Doherty, W. Influence of the Type of Coarse Lightweight Aggregate on Properties of Semilightweight Self-Consolidating Concrete. J. Mater. Civ. Eng. 2012, 24, 1474–1483. [Google Scholar] [CrossRef]
- Navarrete, I. Stratified Concrete: Understanding its Stratification Process and Modelling its Structural Behavior; Pontificia Universidad Catolica de Chile: Santiago, Chile, 2015. [Google Scholar]
- Navarrete, I.; Lopez, M. Estimating the segregation of concrete based on mixture design and vibratory energy. Constr. Build. Mater. 2016, 122, 384–390. [Google Scholar] [CrossRef]
- Esmaeilkhanian, B.; Feys, D.; Khayat, K.H.; Yahia, A. New Test Method to Evaluate Dynamic Stability of Self- Consolidating Concrete. ACI Mater. J. 2014, 299–308. [Google Scholar] [CrossRef]
- Carino, J.N.; Molhotra, V.M. Maturity method. In Handbook on Nondestructive Testing of Concrete; Carino, J.N., Molhotra, V.M., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 101–146. [Google Scholar]
- Naik, T.R.; Malhotra, V.M. Chapter 7: The Ultrasonic Pulse Velocity Method. In Handbook on Nondestructive Testing of Concrete; Carino, J.N., Molhotra, V.M., Eds.; CRC Press: Boca Raton, FL, USA, 1991; pp. 169–188. [Google Scholar]
- Chen, X.; Schmitt, D.R.; Kessler, J.A.; Evans, J.; Kofman, R. Empirical relations between ultrasonic P-wave velocity porosity and uniaxial compressive strength. Recorder 2015, 40, 1–10. [Google Scholar]
- Benaicha, M.; Jalbaud, O.; Roguiez, X.; Hafidi Alaoui, A.; Burtschell, Y. Prediction of Self-Compacting Concrete homogeneity by ultrasonic velocity. Alexandria Eng. J. 2015, 54, 1181–1191. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Garcia-Vera, V.E.; Lanzón, M. Experimental Procedures for Determining the Level of Segregation of Lightweight Aggregate Concretes. In Proceedings of the SynerCrete’18: Interdisciplinary Approaches for Cement-Based Materials and Structural Concrete: Synergizing Expertise and Bridging Scales of Space and Time, Funchal, Portugal, 24–26 October 2018; Azenha, M., Schlicke, D., Benboudjema, F., Jędrzejewska, A., Eds.; RILEM Publications, S.A.R.L.: Paris, France, 2018; pp. 195–200. [Google Scholar]
- Tenza-Abril, A.J.; Villacampa, Y.; Solak, A.M.; Baeza-Brotons, F. Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity. Constr. Build. Mater. 2018, 189, 1173–1183. [Google Scholar] [CrossRef]
- Barbosa, F.S.; Farage, M.C.R.; Beaucour, A.L.; Ortola, S. Evaluation of aggregate gradation in lightweight concrete via image processing. Constr. Build. Mater. 2012, 29, 7–11. [Google Scholar] [CrossRef]
- Mouton, P.R. Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists; JHU Press: Baltimore, MD, USA, 2002. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J. Méthode FANJUL: Dosage pondéral des bétons légers et lourds. Ann. Du Bâtiment. Des Trav. Publics 2012, 5, 32–50. [Google Scholar]
- AENOR; UNE-EN 1097-3. Ensayos Para Determinar las Propiedades Mecánicas y Físicas de los Áridos, Parte 3: Determinación de la Densidad Aparente y la Porosidad; Normas UNE; Aenor: Madrid, Spain, 1999. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J.; Baeza-Brotons, F. A new methodology for determining particle density and absorption of lightweight, normal-weight and heavy weight aggregates in aqueous medium. Constr. Build. Mater. 2017, 146, 630–643. [Google Scholar] [CrossRef]
- AENOR; UNE-EN 1097-6. Ensayos Para Determinar las Propiedades Mecánicas y Físicas de los Áridos, Parte 6: Determinación de la Densidad de Partículas y la Absorción de Agua; Normas UNE; Aenor: Madrid, Spain, 2014. [Google Scholar]
- AENOR; UNE-EN 933-1. Ensayos para Determinar las Propiedades Geométricas de los Áridos, Parte 1: Determinación de la Granulometría de Las Partículas; Método del tamizado; Aenor: Madrid, Spain, 2012. [Google Scholar]
- Fernández-Fanjul, A.; Tenza-Abril, A.J.; Baeza-Brotons, F. A new methodology for determining water absorption of lightweight, normal-weight and heavyweight aggregates in a viscous medium. Constr. Build. Mater. 2018, 165, 596–607. [Google Scholar] [CrossRef]
- AENOR; UNE-EN 196-1. Métodos de Ensayo de Cementos-Parte 1: Determinación de Resistencias Mecánicas; Aenor: Madrid, Spain, 2005. [Google Scholar]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F. Image Analysis Applications for The Study of Segregation in Lightweight Concretes. Int. J. Comput. Methods Exp. Meas. 2017, 6, 835–846. [Google Scholar] [CrossRef]
- Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Fernández-Fanjul, A. El fenómeno de la segregación en hormigones ligeros. Índice de Segregación y estudio ultrasónico. In Proceedings of the VII Congreso Internacional de Estructuras, A Coruña, Spain, 20–22 July 2017; Hormigón y acero. Volume 68, pp. 263–264. [Google Scholar]
- Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing Company: Pacific Grove, CA, USA, 1996. [Google Scholar]
Segregation Level | VI Range (%) |
---|---|
None to slight | 0–40 |
Moderate | 40–80 |
Severe | 80–120 |
Slightly stratified | 120–160 |
Highly stratified | 160–200 |
Concrete | Cement (kg/m3) | Water (kg/m3) | Fine Coarse (kg/m3) | LWA (kg/m3) |
---|---|---|---|---|
LWAC1 | 350 | 210 | 723.9 | 416.2 |
LWAC2 | 350 | 210 | 1046.0 | 294.0 |
LWAC3 | 350 | 210 | 991.1 | 148.9 |
LWAC4 | 350 | 210 | 1234.8 | 105.2 |
LWAC5 | 350 | 210 | 991.1 | 148.9 |
LWAC6 | 350 | 210 | 938.6 | 201.4 |
LWAC7 | 350 | 210 | 723.9 | 416.2 |
LWAC8 | 350 | 210 | 662.0 | 473.0 |
Concrete | Samples (ud) | Theoretical Densities (kg/m3) | Vibration | Type of LWA |
---|---|---|---|---|
LWAC1 | 20 | 1700 | two layers | Arlita Leca HS |
LWAC2 | 20 | 1900 | two layers | Arlita Leca HS |
LWAC3 | 20 | 1700 | one layer | Arlita Leca M |
LWAC4 | 20 | 1900 | one layer | Arlita Leca M |
LWAC5 | 6 | 1700 | one layer | Arlita Leca M |
LWAC6 | 6 | 1700 | one layer | Laterlite LTM |
LWAC 7 | 6 | 1700 | one layer | Arlita Leca HS |
LWAC 8 | 6 | 1700 | one layer | Laterlite LTHS |
Property | Method | Arlita Leca M | Laterlite LTM | Arlita Leca HS | Laterlite LTHS | Fine Coarse |
---|---|---|---|---|---|---|
Dry particle density (kg/m3) | Acord [45] | 482 | 613 | 1019 | 1118 | 2688 |
Bulk density (kg/m3) | UNE EN 1097-3 [44] | 269 | 276 | 610 | 676 | 1610 |
24 h Water absorption (%) | UNE EN 1097-6 [46] | 36.6 | 29.55 | 12.2 | 11.05 | 0.12 |
Granulometric fraction (di/Di) | UNE EN 933-1 [47] | 16/6 | 12/4 | 12/4 | 12/4 | 0/4 |
Size (mm) | Sieving Fraction (%) | ||||
---|---|---|---|---|---|
Arlita Leca M | Laterlite LTM | Arlita Leca HS | Laterlite LTHS | Fine Coarse | |
16 | 99.91 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 95.00 | 99.96 | 98.36 | 95.05 | 100.00 |
8 | 5.87 | 76.50 | 68.71 | 65.33 | 100.00 |
6 | 3.21 | 45.11 | 41.43 | 37.81 | 100.00 |
4 | 2.97 | 4.46 | 5.12 | 13.56 | 99.86 |
2 | 2.93 | 1.04 | 0.91 | 2.22 | 72.27 |
1 | 2.91 | 1.04 | 0.76 | 0.58 | 47.18 |
0.500 | 2.88 | 1.04 | 0.75 | 0.47 | 32.32 |
0.250 | 2.80 | 1.04 | 0.74 | 0.43 | 23.15 |
0.125 | 2.52 | 1.03 | 0.70 | 0.40 | 17.24 |
0.063 | 1.99 | 0.98 | 0.65 | 0.38 | 14.00 |
Mortar | Age (days) | Density (kg/m3) | Absorption (%) | Porosity (%) |
---|---|---|---|---|
M1 | 28 | 2022 | 12.16 | 24.63 |
M2 | 28 | 2104 | 10.01 | 21.11 |
M3 | 28 | 2061 | 10.78 | 22.25 |
M4 | 28 | 2104 | 10.01 | 21.11 |
M5 | 28 | 2061 | 10.78 | 22.25 |
M6 | 28 | 2050 | 11.03 | 22.65 |
M7 | 28 | 1979 | 12.93 | 25.63 |
M8 | 28 | 1955 | 13.57 | 26.57 |
Variable | Observations | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|---|
SIUVP | 208 | 0.820 | 1.106 | 0.967 | 0.053 |
SIKe | 208 | 0.552 | 1.063 | 0.898 | 0.114 |
SIKe AI | 208 | 0.522 | 1.115 | 0.890 | 0.138 |
SINavarrete-Lopez (%) | 208 | 0 | 199 | 46 | 50 |
SIIA (%) | 208 | 11 | 65 | 23 | 10 |
Variables | SIUPV | SIKe | SIKe IA | SINavarrete-Lopez | SIIA |
---|---|---|---|---|---|
SIUVP | 1 | 0.638 | 0.572 | −0.596 | −0.541 |
SIKe | 0.638 | 1 | 0.919 | −0.907 | −0.865 |
SIKe AI | 0.572 | 0.919 | 1 | −0.917 | −0.822 |
SINavarrete-Lopez | −0.596 | −0.907 | −0.917 | 1 | 0.925 |
SISolak | −0.541 | −0.865 | −0.822 | 0.925 | 1 |
Method | Type | Scale | Correlation with the Other Methods 1 | Advantages | Disadvantages | Materials Characterization | Origin of the Data | Results |
---|---|---|---|---|---|---|---|---|
SIUVP | Experimental | - | Moderate | - Easy data collection. - Materials characterization is not necessary. | - Less precision. - Does not analyze the data of the central zone of the sample. | - Not necessary | Segregation Index | |
SIKe | Experimental | Is = 1.0: perfect uniformity. Is ≤ 0.95: start of segregation. | Very Strong | - The “vertical cut” of the specimens is not necessary. | - Does not analyze the data of the central zone of the sample. - Previous characterization of materials it´s necessary. | - Determination of the dry density of the upper and lower sections of the samples. | Segregation Index | |
SIKE IA | Image Analysis | Is = 1.0: perfect uniformity. Is ≤ 0.95: start of segregation. | Very Strong | - The “horizontal cut” of the specimens is not necessary. | - Does not analyze the data of the central zone of the sample. - Previous characterization of materials it´s necessary. - The accuracy of the method depends on the good distinction between the aggregates and the mortar matrix (image). | - Determination of the dry density of the mortar matrix. - Determination of the dry density of the LWAs. | Segregation Index | |
SINavarrete | Image Analysis | 0%–40%—None to slight 40%–80%—Moderate 80%–120%—Severe 120%–160%—Slightly Stratified 160%–200%—Highly Stratified | Very Strong | - The “horizontal cut” of the specimens is not necessary. - Materials characterization is not necessary. | - Does not analyze the data of the central zone of the sample. - The accuracy of the method depends on the good distinction between the aggregates and the mortar matrix (image). | - Not necessary | Segregation Index | |
SIIA | Image Analysis | 0%—Homogeneous Distribution 100%—Maximum Segregation | Strong | - The “horizontal cut” of the specimens is not necessary. - Materials characterization is not necessary. | - The accuracy of the method depends on the good distinction between the aggregates and the mortar matrix (image). | - Not necessary | Segregation Index Segregation Profile 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solak, A.M.; Tenza-Abril, A.J.; Baeza-Brotons, F.; Benavente, D. Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes. Materials 2019, 12, 3642. https://doi.org/10.3390/ma12213642
Solak AM, Tenza-Abril AJ, Baeza-Brotons F, Benavente D. Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes. Materials. 2019; 12(21):3642. https://doi.org/10.3390/ma12213642
Chicago/Turabian StyleSolak, Afonso Miguel, Antonio José Tenza-Abril, Francisco Baeza-Brotons, and David Benavente. 2019. "Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes" Materials 12, no. 21: 3642. https://doi.org/10.3390/ma12213642
APA StyleSolak, A. M., Tenza-Abril, A. J., Baeza-Brotons, F., & Benavente, D. (2019). Proposing a New Method Based on Image Analysis to Estimate the Segregation Index of Lightweight Aggregate Concretes. Materials, 12(21), 3642. https://doi.org/10.3390/ma12213642