Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization Techniques
3. Results and Discussion
3.1. Analysis of Composition and Morphology of Diatomite
3.2. Specific Surface Area and Pore-size of MCM-41 Catalyst Carrier and Diatomite
3.3. FT-IR Analysis of MCM-41
3.4. XRD Analysis of MCM-41
3.5. SEM and TEM Analysis of MCM-41
3.6. Characterization of Mn-Ce/MCM-41
3.7. Catalyst Activity of Mn-Ce/MCM-41
3.8. NH3-TPD Analysis of Mn-Ce/MCM-41
3.9. NH3-DRIFTS Analysis of Mn-Ce/MCM-41
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abelson, P.H. Air pollution and Acid rain. Science 1985, 230, 617–618. [Google Scholar] [CrossRef]
- Taylor, K.C. Nitric oxide catalysis in automotive exhaust systems. Catal. Rev. Sci. Eng. 1993, 35, 457–481. [Google Scholar] [CrossRef]
- Richter, A.; Burrows, J.P.; Nüß, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129. [Google Scholar] [CrossRef]
- Zhao, N.; Shen, B.; Yang, X.; Liu, T. Research progress in numerical simulation for flue gas denitration using selective catalytic reduction. Chem. Ind. Eng. Prog. 2010, 11, 169–174. [Google Scholar]
- Shen, B.; Liu, T.; Ning, Z.; Yang, X.; Deng, L. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. J. Environ. Sci. 2010, 22, 1447–1454. [Google Scholar] [CrossRef]
- Ruiben, J.; Yue, L.; Zhongbiao, W.; Haiqiang, W.; Tingting, G. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study. Chemosphere 2010, 78, 1160–1166. [Google Scholar]
- Tao, Z.; Shaoguang, L.; Mingzao, T.; Chengwu, C.; Yusong, X.U.; Jinming, W.U. Research progress on selective catalytic reduction De-NOx catalysts. J. Chin. Ceram. Soc. 2009, 37, 317–324. [Google Scholar]
- Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.; Olson, D.H.; Sheppard, E.W.; Mccullen, S.B. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843. [Google Scholar] [CrossRef]
- Siddiqui, S.; Siddiqui, Z.N. Strontium Doped MCM-41: A Highly Efficient, Recyclable and Heterogeneous Catalyst for the Synthesis of Phenoxy Pyrazolyl Pyrazolines. Catal. Lett. 2018, 148, 3628–3645. [Google Scholar] [CrossRef]
- Qiu, J.; Zhuang, K.; Lu, M.; Xu, B.; Fan, Y. The selective catalytic reduction activity of Cu/MCM-41 catalysts prepared by using the Cu2+-MCM-41 mesoporous materials with copper ions in the framework as precursors. Catal. Commun. 2013, 31, 21–24. [Google Scholar] [CrossRef]
- Selim, A.Q.; Mohamed, E.A.; Mobarak, M.; Zayed, A.M.; Seliem, M.K.; Komarneni, S. Cr(VI) uptake by a composite of processed diatomite with MCM-41: Isotherm, kinetic and thermodynamic studies. Microporous Mesoporous Mater. 2018, 260, 84–92. [Google Scholar] [CrossRef]
- Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C.D. Mn–Ce/ZSM5 as a new superior catalyst for NO reduction with NH3. Appl. Catal. B Environ. 2007, 73, 60–64. [Google Scholar] [CrossRef]
- Sui, Z.; Chen, X.; Wang, L.Y.; Xu, L.; Zhuang, W.; Chai, Y.; Yang, C. Capping effect of CTAB on positively charged Ag nanoparticles. Phys. E Low Dimens. Syst. Nanostr. 2006, 33, 308–314. [Google Scholar] [CrossRef]
- Borodko, Y.; Jones, L.; Lee, H.; Frei, H.; Somorjai, G.A. Spectroscopic Study of Tetradecyltrimethylammonium Bromide Pt−C14TAB Nanoparticles: Structure and Stability. Langmuir 2009, 25, 6665–6671. [Google Scholar] [CrossRef] [PubMed]
- Cedeno, G.H.; Silvarodrigo, R.; Guevaralara, A.; Melobanda, J.A.; La Torre, A.I.R.D.; Flores, F.M.; Castillomares, A. Role of the Si/Al molar ratio and pH in NIW/MCM41-Al2O3 catalysts for HDS of DBT. Catal. Today 2016, 271, 64–79. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Shukla, P.; Rufford, T.E.; Rudolph, V.; Zhu, Z. Selective catalytic reduction of NO with CO using different metal-oxides incorporated in MCM-41. Chem. Eng. J. 2014, 255, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Gregori, M.; Benito, P.; Fornasari, G.; Migani, M.; Millefanti, S.; Ospitali, F.; Albonetti, S. Preparation of Pd/Cu MCM-41 catalysts for hydrodechlorination: Influence of the synthesis procedure. Microporous Mesoporous Mater. 2014, 190, 1–9. [Google Scholar] [CrossRef]
- Vartuli, J.C.; Schmitt, K.D.; Mccullen, S.B.; Hellring, S.D.; Beck, J.S.; Schlenker, J.L.; Olson, D.H.; Sheppard, E.W.; Kresge, C.T.; Roth, W.J. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chem. Mater. 1994, 6, 2317–2326. [Google Scholar] [CrossRef]
- Kresge, C.T.; Leonowicz, M.E.; Roth, W.J.; Vartuli, J.C.; Beck, J.S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712. [Google Scholar] [CrossRef]
- Huo, Q.; Margolese, A.D.I.; Stucky, G.D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem. Mater. 1996, 8, 1147–1160. [Google Scholar] [CrossRef]
- Ma, X.; Liang, Y.; Cui, S.; Wang, Z.; Wang, Y. Preparation of Denitrification Catalytic Materials Using TiO2-SiO2 Composites as Carrier by Rice Husk Ash. Mater. Rev. 2018, 32, 3984–3988. [Google Scholar]
- Firouzi, A.; Kumar, D.; Bull, L.M.; Besier, T.; Sieger, P.; Huo, Q.; Walker, S.A.; Zasadzinski, J.A.; Glinka, C.; Nicol, J. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 1995, 267, 1138–1143. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.K.; Nam, K.B.; Hong, S.C. Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. A Gen. 2015, 497, 160–166. [Google Scholar]
- Putluru, S.S.R.; Schill, L.; Jensen, A.D.; Siret, B.; Tabaries, F.; Fehrmann, R. Mn/TiO2 and Mn-Fe/TiO2 catalysts synthesized by deposition precipitation—Promising for selective catalytic reduction of NO with NH3 at low temperatures. Appl. Catal. B Environ. 2015, 165, 628–635. [Google Scholar] [CrossRef]
- Fan, J.; Ning, P.; Song, Z.; Liu, X.; Wang, L.; Wang, J.; Wang, H.; Long, K.; Zhang, Q. Mechanistic aspects of NH3-SCR reaction over CeO2/TiO2-ZrO2-SO42- catalyst: In situ DRIFTS investigation. Chem. Eng. J. 2018, 334, 855–863. [Google Scholar] [CrossRef]
- Zhang, Q.; Jie, F.; Ping, N.; Song, Z.; Xin, L.; Wang, L.; Jing, W.; Wang, H.; Long, K. In situ DRIFTS investigation of NH3-SCR reaction over CeO2 /zirconium phosphate catalyst. Appl. Surf. Sci. 2018, 435, 1037–1045. [Google Scholar] [CrossRef]
- Chen, W.; Li, Z.; Hu, F.; Qin, L.; Han, J.; Wu, G. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst. Appl. Surf. Sci. 2018, 439, 75–81. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Härelind, H.; Duan, W.; Wang, B.; Si, Z. NH3-SCR reaction mechanisms of NbOx/Ce0.75Zr0.25O2 catalyst: DRIFTS and kinetics studies. J. Mol. Catal. A Chem. 2016, 423, 172–180. [Google Scholar] [CrossRef]
Sample | Mass (g) | SiO2 (%) |
---|---|---|
Diatomite | 10 | 95.3638 |
filter residue 1 | 5.0228 | 91.1808 |
filter residue 2 | 5.1064 | 90.6944 |
Component | SiO2 | Fe2O3 | Al2O3 | K2O | CaO | Na2O |
---|---|---|---|---|---|---|
Content (%) | 95.36 | 1.41 | 1.08 | 0.86 | 0.62 | 0.22 |
Sample | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
MCM-41(0.1) | 858.3 | 0.78 | 3.4 |
MCM-41(0.2) | 941.8 | 0.94 | 3.3 |
MCM-41(0.3) | 924.1 | 0.96 | 3.4 |
Catalyst | Chemical Compositions (wt.%) | SBET (m2/g) | Pore Volume (cm3/g) | Average Pore Diameter (nm) | ||
---|---|---|---|---|---|---|
MnO | CeO2 | SiO2 | ||||
Mn-Ce/MCM-41(0.1) | 3.73 | 2.58 | 93.46 | 829.3 | 0.78 | 3.3 |
Mn-Ce/MCM-41(0.2) | 13.28 | 6.65 | 79.75 | 587.1 | 0.48 | 3.3 |
Mn-Ce/MCM-41(0.3) | 9.29 | 5.30 | 85.13 | 615.1 | 0.52 | 3.4 |
Mn-Ce/Diatomite | 2.38 | 2.22 | 90.93 | 16.9 | 0.06 | 11.5 |
Mn-Ce-SiO2 [22] | 2.68 | 1.56 | 95.47 | 267.9 | 0.60 | 8.7 |
Mn-Ce-TiO2 [22] | MnO | CeO2 | TiO2 | 124.9 | 0.17 | 4.2 |
17.32 | 8.79 | 62.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, M.; Ma, X.; Cui, S.; Liu, T.; Tian, Y.; Wang, Y. Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials 2019, 12, 3654. https://doi.org/10.3390/ma12223654
Ma M, Ma X, Cui S, Liu T, Tian Y, Wang Y. Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials. 2019; 12(22):3654. https://doi.org/10.3390/ma12223654
Chicago/Turabian StyleMa, Mingxuan, Xiaoyu Ma, Suping Cui, Tingting Liu, Yingliang Tian, and Yali Wang. 2019. "Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite" Materials 12, no. 22: 3654. https://doi.org/10.3390/ma12223654
APA StyleMa, M., Ma, X., Cui, S., Liu, T., Tian, Y., & Wang, Y. (2019). Low Temperature NH3-SCR over Mn-Ce Oxides Supported on MCM-41 from Diatomite. Materials, 12(22), 3654. https://doi.org/10.3390/ma12223654