Magnesium Phosphate Cement as Mineral Bone Adhesive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cement Preparation
2.2. Compressive Strength Testing
2.3. Phase Composition
2.4. Adhesion Testing
2.5. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schierle, H.P.; Hausamen, J.E. Modern principles in the treatment of craniomaxillofacial fractures. Unfallchirurg 1997, 100, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Endres, K.; Marx, R.; Tinschert, J.; Wirtz, D.C.; Stoll, C.; Riediger, D.; Smeets, R. A new adhesive technique for internal fixation in midfacial surgery. Biomed. Eng. Online 2008, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Esteves, J.C.; Monteiro, J.M.; Aranega, A.M.; Betoni Junior, W.; Sonoda, C.K. Utilization of ethyl cyanoacrylate and 2-Octyl cyanoacrylate adhesives for autogenous bone graft fixation: Histomorphometric study in rats. J. Oral Implantol. 2014, 40, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Akcal, M.A.; Poyanli, O.; Unay, K.; Esenkaya, I.; Gokcen, B.; Firatligil, A.S. Effect of N-butyl cyanoacrylate on fracture healing in segmental rat tibia fracture model. J. Orthop. Surg. Res. 2014, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Wistlich, L.; Rucker, A.; Schamel, M.; Kubler, A.C.; Gbureck, U.; Groll, J. A bone glue with sustained adhesion under wet conditions. Adv. Healthc. Mater. 2017, 6, 1600902. [Google Scholar] [CrossRef]
- Smeets, R.; Endres, K.; Stockbrink, G.; Hanken, H.; Hermanns-Sachweh, B.; Marx, R.; Heiland, M.; Blessmann, M.; Wolff, K.-D.; Kolk, A. The innovative application of a novel bone adhesive for facial fracture osteosynthesisin vitro and in vivo results. J. Biomed. Mater. Res. Part A 2013, 101, 2058–2066. [Google Scholar] [CrossRef]
- Zhao, X.; Olsen, I.; Li, H.; Gellynck, K.; Buxton, P.G.; Knowles, J.C.; Salih, V.; Young, A.M. Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: Chemical, mechanical and biological considerations. Acta Biomater. 2010, 6, 845–855. [Google Scholar] [CrossRef]
- Song, S.H.; Kyung, H.; Oh, S.-H.; Kang, N. Fixation of fractured anterior wall of maxillary sinus using fibrin glue in a zygomaticomaxillary complex fracture. J. Craniofacial Surg. 2014, 25, 919–921. [Google Scholar] [CrossRef]
- Olofsson, K.; Granskog, V.; Cai, Y.; Hult, A.; Malkoch, M. Activated dopamine derivatives as primers for adhesive-patch fixation of bone fractures. RSC Adv. 2016, 6, 26398–26405. [Google Scholar] [CrossRef]
- Perikamana, S.K.M.; Lee, J.; Lee, Y.B.; Shin, Y.M.; Lee, E.J.; Mikos, A.G.; Shin, H. Materials from mussel-inspired chemistry for cell and tissue engineering applications. Biomacromolecules 2015, 16, 2541–2555. [Google Scholar] [CrossRef]
- Jo, Y.K.; Choi, B.H.; Zhou, C.; Ahn, J.S.; Jun, S.H.; Cha, H.J. Bioengineered mussel glue incorporated with a cell recognition motif as an osteostimulating bone adhesive for titanium implants. J. Mater. Chem. B 2015, 3, 8102–8114. [Google Scholar] [CrossRef]
- Lu, D.D.; Wang, H.S.; Wang, X.Y.; Li, Y.F.; Guo, H.Y.; Sun, S.B.; Zhao, X.L.; Yang, Z.W.; Lei, Z.Q. Biomimetic chitosan-graft-polypeptides for improved adhesion in tissue and metal. Carbohydr. Polym. 2019, 215, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Serrano, F.J.C.; Pinzon, L.M.; Narvaez, D.M.; Paez, C.I.C.; Moreno-Serrano, C.L.; Tabima, D.M.; Salcedo, F.; Briceno, J.C.; Casas-Rodriguez, J.P. Evaluation of a water-resistant and biocompatible adhesive with potential use in bone fractures. J. Adhes. Sci. Technol. 2017, 31, 1480–1495. [Google Scholar] [CrossRef]
- Pinzon, L.M.; Cedano, F.J.; Castro, C.I.; Briceno, J.C.; Casas, J.P.; Tabima, D.M.; Salcedo, F. Formulation and characterization of chitosan-based biocomposites with potential use for bone adhesion. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 697–707. [Google Scholar] [CrossRef]
- Farrar, D.F. Bone adhesives for trauma surgery: A review of challenges and developments. Int. J. Adhes. Adhes. 2012, 33, 89–97. [Google Scholar] [CrossRef]
- Klammert, U.; Ignatius, A.; Wolfram, U.; Reuther, T.; Gbureck, U. In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model. Acta Biomater. 2011, 7, 3469–3475. [Google Scholar] [CrossRef]
- Kanter, B.; Geffers, M.; Ignatius, A.; Gbureck, U. Control of in vivo mineral bone cement degradation. Acta Biomater. 2014, 10, 3279–3287. [Google Scholar] [CrossRef]
- Heiss, C.; Kraus, R.; Peters, F.; Henn, W.; Schnabelrauch, M.; Berg, A.; Pautzsch, T.; Weisser, J.; Schnettler, R. Development of a bioresorbable self-hardening bone adhesive based on a composite consisting of polylactide methacrylates and β-tricalcium phosphate. J. Biomed. Mater. Res. B Appl. Biomat. 2009, 90B, 55–66. [Google Scholar] [CrossRef]
- Young, A.M.; Man Ho, S.; Abou Neel, E.A.; Ahmed, I.; Barralet, J.E.; Knowles, J.C.; Nazhat, S.N. Chemical characterization of a degradable polymeric bone adhesive containing hydrolysable fillers and interpretation of anomalous mechanical properties. Acta Biomater. 2009, 5, 2072–2083. [Google Scholar] [CrossRef]
- Gellynck, K.; Abou Neel, E.A.; Li, H.; Mardas, N.; Donos, N.; Buxton, P.; Young, A.M. Cell attachment and response to photocured, degradable bone adhesives containing tricalcium phosphate and purmorphamine. Acta Biomater. 2011, 7, 2672–2677. [Google Scholar] [CrossRef]
- Mestres, G.; Ginebra, M.-P. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomater. 2011, 7, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Waselau, M.; Samii, V.F.; Weisbrode, S.E.; Litsky, A.S.; Bertone, A.L. Effects of a magnesium adhesive cement on bone stability and healing following a metatarsal osteotomy in horses. Am. J. Vet. Res. 2007, 68, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Christel, T.; Christ, S.; Barralet, J.E.; Groll, J.; Gbureck, U. Chelate bonding mechanism in a novel magnesium phosphate bone cement. J. Am. Ceram. Soc. 2015, 98, 694–697. [Google Scholar] [CrossRef]
- Graf, E.; Eaton, J.W. Antioxidant functions of phytic acid. Free Radic. Biol. Med. 1990, 8, 61–69. [Google Scholar] [CrossRef]
- Ekholm, P.; Virkki, L.; Ylinen, M.; Johansson, L. The effect of phytic acid and some natural chelating agents on the solubility of mineral elements in oat bran. Food Chem. 2003, 80, 165–170. [Google Scholar] [CrossRef]
- Mahanti, H.S.; Barnes, R.M. Determination of major, minor and trace elements in bone by inductively-coupled plasma emission spectrometry. Anal. Chim. Acta 1983, 151, 409–417. [Google Scholar] [CrossRef]
- Weber, S.C.; Chapman, M.W. Adhesives in orthopedic-surgery—A review of the literature and invitro bonding strengths of bone-bonding agents. Clin. Orthop. Relat. Res. 1984, 191, 249–261. [Google Scholar]
- Nabiyouni, M.; Brueckner, T.; Zhou, H.; Gbureck, U.; Bhaduri, S.B. Magnesium-based bioceramics in orthopedic applications. Acta Biomater. 2018, 66, 23–43. [Google Scholar] [CrossRef]
- Barradas, A.M.C.; Yuan, H.; Blitterswijk, C.A.v.; Habibovic, P. Osteoinductive biomaterials: Current knowledge of properties, experimental models and biological mechanisms. Eur. Cells Mater. 2011, 21, 407–429. [Google Scholar] [CrossRef]
- Ooms, E.M.; Wolke, J.G.C.; van de Heuvel, M.T.; Jeschke, B.; Jansen, J.A. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials 2003, 24, 989–1000. [Google Scholar] [CrossRef]
- Grover, L.M.; Gbureck, U.; Farrar, D.; Barralet, J.E. Adhesion of a novel calcium phosphate cement to cortical bone and several common biomaterials. Key Eng. Mater. 2006, 309–311, 849–852. [Google Scholar]
- Dorozhkin, S.V. Bioceramics of calcium orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef] [PubMed]
- Gulotta, L.V.; Kovacevic, D.; Ying, L.; Ehteshami, J.R.; Montgomery, S.; Rodeo, S.A. Augmentation of tendon-to-bone healing with a magnesium-based bone adhesive. Am. J. Sports Med. 2008, 36, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Galante, J.; Rostoker, W.; Ray, R.D. Physical properties of trabecular bone. Calcif. Tissue Res. 1970, 5, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Klammert, U.; Reuther, T.; Blank, M.; Reske, I.; Barralet, J.E.; Grover, L.M.; Kübler, A.C.; Gbureck, U. Phase composition, mechanical performance and in vitro biocompatibility of hydraulic setting calcium magnesium phosphate cement. Acta Biomater. 2010, 6, 1529–1535. [Google Scholar] [CrossRef]
- Ishihara, K.; Nakabayashi, N. Adhesive bone cement both to bone and metals: 4-META in MMA initiated with tri-n-butyl borane. J. Biomed. Mater. Res. 1989, 23, 1475–1482. [Google Scholar] [CrossRef]
- Meininger, S.; Blum, C.; Schamel, M.; Barralet, J.E.; Ignatius, A.; Gbureck, U. Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro. Sci. Rep. 2017, 7, 558. [Google Scholar] [CrossRef] [Green Version]
Ca-to-Mg-Ratio (wt.%/wt.%) | |||
---|---|---|---|
Phytic Acid (%) | Time | Cement Residues | Adherend |
0 | initial | 0.23 ± 0.02 | 3.0 ± 0.2 |
24 h | 0.31 ± 0.03 | 2.7 ± 0.2 | |
7 d | 1.6 ± 0.1* | 5.6 ± 0.5 | |
20.0 | initial | 0.08 ± 0.01 | 4.9 ± 0.5 |
24 h | 0.20 ± 0.02 | 4.7 ± 0.2 | |
7 d | 0.42 ± 0.05 | 8.8 ± 0.7 | |
22.5 | initial | 0 ± 0 | 6.2 ± 0.5 |
24 h | 0.17 ± 0.02 | 8.8 ± 0.9 | |
7 d | 0.51 ± 0.04 | 8.3 ± 0.6 | |
25.0 | initial | 0.01 ± 0.01 | 7.3 ± 0.8 |
24 h | 0.11 ± 0.01 | 3.9 ± 0.3 | |
7 d | 0.26 ± 0.02 | 9.9 ± 0.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brückner, T.; Meininger, M.; Groll, J.; Kübler, A.C.; Gbureck, U. Magnesium Phosphate Cement as Mineral Bone Adhesive. Materials 2019, 12, 3819. https://doi.org/10.3390/ma12233819
Brückner T, Meininger M, Groll J, Kübler AC, Gbureck U. Magnesium Phosphate Cement as Mineral Bone Adhesive. Materials. 2019; 12(23):3819. https://doi.org/10.3390/ma12233819
Chicago/Turabian StyleBrückner, Theresa, Markus Meininger, Jürgen Groll, Alexander C. Kübler, and Uwe Gbureck. 2019. "Magnesium Phosphate Cement as Mineral Bone Adhesive" Materials 12, no. 23: 3819. https://doi.org/10.3390/ma12233819
APA StyleBrückner, T., Meininger, M., Groll, J., Kübler, A. C., & Gbureck, U. (2019). Magnesium Phosphate Cement as Mineral Bone Adhesive. Materials, 12(23), 3819. https://doi.org/10.3390/ma12233819