Terahertz Time-Domain Reconstruction of Coating Microstratigraphy on Gilded Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Layered Samples and Original Frame Ornament
2.2. THz Imaging Setup
2.3. Fitting Procedure for Thickness Estimation
3. Results and Discussion
3.1. Cross-Section for Direct Thickness Measurement
3.2. THz Thickness Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Liu, H.; Tang, M.; Haung, J.Q.; Liu, W.; Dong, J.; Chen, X.; Fu, W.; Zhang, Y. The medical application of terahertz technology in non-invasive detection of cells and tissues: Opportunities and challenges. RCS Adv. 2019, 9, 9354–9363. [Google Scholar]
- Mittleman, D.M. Twenty years of terahertz imaging. Opt. Express 2018, 26, 9417–9431. [Google Scholar] [CrossRef] [PubMed]
- Federici, J.; Moeller, L. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010, 107, 111101. [Google Scholar] [CrossRef]
- Zhong, S. Progress in terahertz nondestructive testing: A review. Front. Mech. Eng. 2018, 14, 1–9. [Google Scholar] [CrossRef]
- Dinovitser, A.; Valchev, D.G.; Abbott, D. Terahertz time-domain spectroscopy of edible oils. R. Soc. Open Sci. 2017, 4, 170275. [Google Scholar] [CrossRef]
- Kawase, M. Application of Terahertz Waves to Food Science. Food Sci. Technol. Res. 2012, 18, 601–609. [Google Scholar] [CrossRef]
- Yan, Z.; Ying, Y.; Zhang, H.; Yu, H. Research progress of terahertz wave technology in food inspection. In Terahertz Physics, Devices, and Systems; SPIE: Boston, MA, USA, 2006. [Google Scholar] [CrossRef]
- Sun, Q.; He, Y.; Liu, K.; Fan, S.; Parrott, E.P.J.; Pickwell-MacPherson, E. Recent advances in terahertz technology for biomedical applications. Quant. Imaging Med. Surg. 2017, 7, 345–355. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Appalictions of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Cheon, H.; Yang, H.; Lee, S.; Kim, Y.A.; Son, J. Terahertz molecular resonance of cancer DNA. Sci. Rep. 2016, 6, 37103. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Berry, E.; Zinov’ev, N.N.; Homer-Vanniasinkam, S.; Miles, R.E.; Chamberlain, J.M.; Smith, M.A. Catalogue of Human Tissue Optical Properties at Terahertz Frequencies. J. Bio. Phys. 2003, 129, 123–128. [Google Scholar] [CrossRef]
- Pan, R.; Zhao, S.; Shen, J. Terahertz spectra applications in identification of illicit drugs using support vector machines. Procedia Eng. 2010, 7, 15–21. [Google Scholar] [CrossRef]
- Davies, A.G.; Burnett, A.D.; Fan, W.; Linfield, E.H.; Cunningham, J.E. Terahertz spectroscopy of explosives and drugs. Mater. Today 2008, 11, 18–26. [Google Scholar] [CrossRef]
- Federici, J.F.; Schulkin, B.; Huang, F.; Gary, D.; Barat, R.; Oliveira, F.; Zimdars, D. THz imaging and sensing for security applications—explosives, weapons and drugs. Semicond. Sci. Technol. 2005, 20, S266–S280. [Google Scholar] [CrossRef]
- Fukunaga, K.; Hosako, I. Comptes. Innovative non-invasive analysis techniques for cultural heritage using terahertz technology Techniques. C. R. Phys. 2010, 11, 519–526. [Google Scholar] [CrossRef]
- Jackson, J.B.; Bowen, J.; Walker, G.; Labaune, J.; Mourou, G.; Menu, M.; Fukunaga, K. A Survey of Terahertz Applications in Cultural Heritage Conservation Science. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 220–231. [Google Scholar] [CrossRef]
- Tasseva, J.; Taschin, A.; Bartolini, P.; Striova, J.; Fontana, R.; Torre, R. Thin layered drawing media probed by THz time-domain spectroscopy. Analyst 2016, 142, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Cacciari, I.; Agresti, J.; Siano, S. Combined THz and LIPS analysis of corroded archaeological bronzes. Microchem. J. 2016, 126, 76–82. [Google Scholar] [CrossRef]
- Momose, W.; Yoshino, H.; Katakawa, Y.; Yamashita, K.; Imai, K.; Sako, K.; Kato, E.; Irisawa, A.; Yonemochi, E.; Terada, K. Applying terahertz technology for nondestructive detection of crack initiation in a film-coated layer on a swelling tablet. Res. Pharm. Sci. 2012, 2, 29–37. [Google Scholar] [CrossRef]
- May, R.K.; Evans, M.J.; Zhong, S.; Warr, I.; Gladden, L.F.; Shen, Y.; Zeitler, J.A. Terahertz in-line sensor for direct coating thickness measurement of individual tablets during film coating in real-time. J. Pharm. Sci. 2011, 100, 1535–1544. [Google Scholar] [CrossRef]
- Yasuda, T.; Iwata, T.; Araki, T.; Yasu, T. Improvement of minimum paint film thickness for THz paint meters by multiple-regression analysis. Appl. Opt. 2007, 46, 7518–7526. [Google Scholar]
- Krimi, S.; Klier, J.; Jonuscheit, J.; von Freymann, G.; Urbansky, R.; Beigang, R. Highly accurate thickness measurement of multi-layered automotive paints using terahertz technology. Appl. Phys. Lett. 2016, 109, 021105. [Google Scholar] [CrossRef]
- Koch Dandolo, C.L.; Gomez-Sepulveda, A.M.; Hernandez-Serrano, A.I.; Castro-Camus, E. Examination of painting on metal support by Terahertz Time-Domain imaging. J. Infrared Millim. Terahertz Waves 2017, 38, 1278–1287. [Google Scholar] [CrossRef]
- Adam, A.J.L.; Planken, P.C.M.; Meloni, S.; Dik, J. Terahertz imaging of hidden paint layers on canvas. Opt. Express 2009, 17, 3407–3416. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Jackson, J.B.; Melis, M.; Giovanacci, D.; Walker, G.C.; Locquet, A.; Bowen, J.W.; Citrin, D.S. Terahertz frequency wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting. Opt. Express 2016, 24, 26972–26985. [Google Scholar] [CrossRef]
- Mittleman, D.M.; Hunsche, S.; Boivin, L.; Nuss, SM.C. T-ray tomography. Opt. Lett. 1997, 22, 904–906. [Google Scholar] [CrossRef]
- Glover, H. A description of 19th century American gilded picture frames and an outline of their modern use and conservation. In AIC Paintings, Specialty Group Postprints; American Institute for Conservation of Historic & Artistic Work: Washington, DC, USA, 2007; Volume 20, pp. 129–144. [Google Scholar]
- Cennino Cennini, C. Il Libro Dell’arte; Neri Pozza Editore: Vicenza, Italy, 2003. [Google Scholar]
- Ciofini, D.; Striova, J.; Camaiti, M.; Siano, S. Photo-oxidative kinetics of solvent and oil-based terpenoid varnishes. Polym. Degrad. Stab. 2016, 123, 47–61. [Google Scholar] [CrossRef]
- Cacciari, I.; Siano, S. Use of THz Reflectometry for Roughness Estimations of Archeological Metal Surfaces. J. Infrared Millim. Te. 2017, 38, 503–517. [Google Scholar] [CrossRef]
- Cacciari, I.; Mugnai, D.; Ranfagni, A. Resolving power beyond the diffraction limit demonstrated with composed pupils at microwave and THz frequencies. J. Appl. Phys. 2019, 125, 044901. [Google Scholar] [CrossRef]
- Burford, N.M.; El-Shenawee, M.O. Review of terahertz photoconductive antenna technology. Opt. Eng. 2017, 56, 010901. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Cacciari, I.; Siano, S. THz spectrometer with fiber coupled antennas: Preliminary application test for characterizing stone artifact. In Proceedings of the 2014 Fotonica AEIT Italian Conference on Photonics Technologies, Naples, Italy, 12–14 May 2004; pp. 1–4. [Google Scholar]
- Cacciari, I.; Ciofini, D.; Siano, S. THz characterization of painting layers. In Proceedings of the 2015 Fotonica AEIT Italian Conference on Photonics Technologies, Turin, Italy, 6–8 May 2015; pp. 1–4. [Google Scholar]
A4, A6 | A5 | B4, B6 | B5 | C4, C6 | C5 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | |
Gy1 | 426 ± 4% | 424 ± 4% | 425 ± 3% | 424 ± 4% | 798 ± 32% | 828 ± 4% | 798 ± 4% | 828 ± 4% | 1218 ± 3% | 1196 ± 3% | 1202 ± 4% | 1196 ± 3 |
Red Bole | - | 66 ± 23% | 67 ± 9% | 66 ± 23% | - | 49 ± 28% | 63 ± 5% | 49 ± 28% | - | 45 ± 40% | 63 ± 39% | 45 ± 40% |
Gy2 | - | 469 ± 7% | 499 ± 2% | 469 ± 7% | - | 370 ± 3% | 350 ± 16% | 370 ± 3% | - | 366 ± 9% | 342 ± 20% | 366 ± 9% |
A1, A3 | A2 | B1, B3 | B2 | C1, C3 | C2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | |
Col-Eth | 54 ± 28% | 40 ± 12% | 55 ± 38% | 40 ± 12% | 70 ± 25% | 51 ± 18% | 60 ± 32% | 51 ± 18% | 69 ± 27% | 45 ± 35% | 67 ± 16% | 45 ± 35% |
Gy1 | 461 ± 19% | 397 ± 7% | 496 ± 9% | 397 ± 7% | 796 ± 9% | 728 ± 6% | 801 ± 12% | 728 ± 6% | 1129 ± 9% | 1115 ± 5% | 1138 ± 7% | 1115 ± 5% |
Red Bole | - | 150 ± 27% | 113 ± 35% | 150 ± 27% | - | 46 ± 9% | 77 ± 16% | 46 ± 9% | - | 73 ± 23% | 88 ± 38% | 73 ± 23% |
Gy2 | - | 384 ± 6% | 379 ± 21% | 384 ± 6% | - | 380 ± 7% | 408 ± 13% | 380 ± 7% | - | 372 ± 8% | 325 ± 28% | 372 ± 8% |
A7 | A8 | B7 | B8 | C7 | C8 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | |
She-Eth | 60 ± 30% | 52 ± 16% | 62 ± 24% | 52 ± 16% | 53 ± 33% | 46 ± 27% | 55 ± 37% | 46 ± 27% | 62 ± 24% | 75 ± 26% | 67 ± 28% | 75 ± 26% |
Gy1 | 449 ± 26% | 456 ± 8% | 496 ± 32% | 456 ± 8% | 1033 ± 33% | 920 ± 2% | 1020 ± 12% | 920 ± 2% | 1141 ± 19% | 1174 ± 4% | 1126 ± 13% | 1174 ± 4% |
Red Bole | 128 ± 31% | 84 ± 21% | - | 84 ± 21% | 94 ± 17% | 107 ± 34% | - | 107 ± 34% | 88 ± 18% | 43 ± 30% | - | 43 ± 30% |
Gy2 | 570 ± 22% | 498 ± 8% | - | 498 ± 8% | 287 ± 26% | 293 ± 8% | - | 293 ± 8% | 440 ± 30% | 368 ± 9% | - | 368 ± 9% |
A10, A12 | A11 | B10, B12 | B11 | C10, C12 | C11 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | THz | Optical | |
Oil-San | 59 ± 32% | 59 ± 26% | 69 ± 16% | 59 ± 26% | 130 ± 39% | 105 ± 24% | 67 ± 37% | 105 ± 24% | 60 ± 22% | 89 ± 8% | 70 ± 15% | 89 ± 8% |
Gy1 | 553 ± 23% | 516 ± 8% | 574 ± 25% | 516 ± 8% | 628 ± 25% | 689 ± 5% | 657 ± 21% | 689 ± 5% | 1152 ± 18% | 1102 ± 8% | 1161 ± 6% | 1102 ± 8% |
Red Bole | 82 ± 20% | 86 ± 13% | -- | 86 ± 13% | 126 ± 32% | 89 ± 30% | -- | 89 ± 30% | 89 ± 17% | 58 ± 20% | -- | 58 ± 20% |
Gy2 | 491 ± 39% | 460 ± 6% | -- | 460 ± 6% | 439 ± 32% | 405 ± 15% | -- | 405 ± 15% | 504 ± 12% | 436 ± 6% | -- | 436 ± 6% |
1 | 2 | 3 | |
---|---|---|---|
Varnish | 33 | - | - |
Gy1 | 180 | 160 | - |
Red Bole | 66 | 46 | 66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciari, I.; Ciofini, D.; Baija, H.; Siano, S. Terahertz Time-Domain Reconstruction of Coating Microstratigraphy on Gilded Surfaces. Materials 2019, 12, 3822. https://doi.org/10.3390/ma12233822
Cacciari I, Ciofini D, Baija H, Siano S. Terahertz Time-Domain Reconstruction of Coating Microstratigraphy on Gilded Surfaces. Materials. 2019; 12(23):3822. https://doi.org/10.3390/ma12233822
Chicago/Turabian StyleCacciari, Ilaria, Daniele Ciofini, Hubert Baija, and Salvatore Siano. 2019. "Terahertz Time-Domain Reconstruction of Coating Microstratigraphy on Gilded Surfaces" Materials 12, no. 23: 3822. https://doi.org/10.3390/ma12233822
APA StyleCacciari, I., Ciofini, D., Baija, H., & Siano, S. (2019). Terahertz Time-Domain Reconstruction of Coating Microstratigraphy on Gilded Surfaces. Materials, 12(23), 3822. https://doi.org/10.3390/ma12233822