Simulation of Ti-6Al-4V Additive Manufacturing Using Coupled Physically Based Flow Stress and Metallurgical Model
Abstract
:1. Introduction
2. Physically Based Flow-Stress Model
2.1. Long-Range Stress Component
2.2. Short-Range Stress Component
2.3. Evolution of Immobile Dislocation Density
2.3.1. Hardening Process
2.3.2. Restoration Processes
2.4. Evolution of Excess Vacancy Concentration
3. Phase-Evolution Model
3.1. Phase Transformations
3.2. Adaptation of Johnson–Mehl–Avrami–Kolmogrov (JMAK) Model for Diffusional Transformation
3.3. Formation of Phase
3.4. Dissolution of Phase
4. Coupling of Phase and Flow-Stress Models
5. Additive Manufacturing
6. Modelling of Additive Manufacturing
6.1. Heat Source
6.2. Modelling of Material Addition
6.3. Boundary Conditions
7. Comparison of Measurements and Simulations
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DED | Directed Energy Deposition |
TMM | Thermomechanical-Microstructural |
AM | Additive Manufacturing |
JMAK | Johnson–Mehl–Avrami–Kolmogrov |
PBF | Powder Bed Fusion |
FE | Finite Element |
ROM | Rule of Mixtures |
CTE | Coefficient of Thermal Expansion |
CAD | Computer Aided Design |
CNC | Computer Numerical Controlled |
DT | Dwell Time |
TC | Thermocouple |
References
- Tuomi, J.; Björkstrand, R.; Pernu, M.; Salmi, M.; Huotilainen, E.; Wolff, J.; Vallittu, P.; Mäkitie, A. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials. J. Mater. Sci. Mater. Med. 2017, 28, 53. [Google Scholar] [CrossRef] [PubMed]
- Dey, N.; Liou, F.; Nedic, C. Additive manufacturing laser deposition of Ti-6Al-4V for aerospace repair applications. In Proceedings of the 24th International SFF Symposium—An Additive Manufacturing Conference, Austin, TX, USA, 12–14 August 2013; pp. 853–858. [Google Scholar]
- Baykasoglu, C.; Akyildiz, O.; Candemir, D.; Yang, Q.; To, A.C. Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V. J. Manuf. Sci. Eng. 2018, 140, 051003. [Google Scholar] [CrossRef]
- Salsi, E.; Chiumenti, M.; Cervera, M. modelling of Microstructure Evolution of Ti6Al4V for Additive Manufacturing. Metals 2018, 8, 633. [Google Scholar] [CrossRef]
- Vastola, G.; Zhang, G.; Pei, Q.X.; Zhang, Y.W. Modeling the microstructure evolution during additive manufacturing of Ti6Al4V: A comparison between electron beam melting and selective laser melting. JOM 2016, 68, 1370–1375. [Google Scholar] [CrossRef]
- Song, K.; Wei, Y.; Dong, Z.; Ma, R.; Zhan, X.; Zheng, W.; Fang, K. Constitutive model coupled with mechanical effect of volume change and transformation induced plasticity during solid phase transformation for TA15 alloy welding. Appl. Math. Model. 2015, 39, 2064–2080. [Google Scholar] [CrossRef]
- Teixeira, J.; Denand, B.; Aeby-Gautier, E.; Denis, S. Simulation of coupled temperature, microstructure and internal stresses evolutions during quenching of a β-metastable titanium alloy. Mater. Sci. Eng. A 2016, 651, 615–625. [Google Scholar] [CrossRef]
- Cao, J.; Gharghouri, M.A.; Nash, P. Finite-element analysis and experimental validation of thermal residual stress and distortion in electron beam additive manufactured Ti-6Al-4V build plates. J. Mater. Process. Technol. 2016, 237, 409–419. [Google Scholar] [CrossRef]
- Ahn, J.; He, E.; Chen, L.; Wimpory, R.; Dear, J.; Davies, C. Prediction and measurement of residual stresses and distortions in fibre laser welded Ti-6Al-4V considering phase transformation. Mater. Des. 2017, 115, 441–457. [Google Scholar] [CrossRef]
- Babu, B. Mechanism-Based Flow Stress Model for Ti-6Al-4V: Applicable for Simulation of Additive Manufacturing and Machining. Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2018. [Google Scholar]
- Babu, B.; Lindgren, L.E. Dislocation density based model for plastic deformation and globularization of Ti-6Al-4V. Int. J. Plast. 2013, 50, 94–108. [Google Scholar] [CrossRef]
- Murgau, C.; Lundbäck, A.; Åkerfeldt, P.; Pederson, R. Temperature and Microstructure Evolution in Gas Tungsten Arc Welding Wire Feed Additive Manufacturing of Ti-6Al-4V. J. Mater. 2019, 12, 3534. [Google Scholar] [CrossRef]
- Seeger, A. The mechanism of Glide and Work Hardening in FCC and HCP Metals. In Dislocations and Mechanical Properties of Crystals; Fisher, J., Johnston, W.G., Thomson, R., Vreeland, T.J., Eds.; Wiley: New York, NY, USA, 1956; pp. 243–329. [Google Scholar]
- Bergström, Y. Dislocation model for the stress-strain behaviour of polycrystalline alpha-iron with special emphasis on the variation of the densities of mobile and immobile dislocations. Mater. Sci. Eng. 1969, 5, 193–200. [Google Scholar] [CrossRef]
- Kocks, U. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. Trans. ASME 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Conrad, H. Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 1981, 26, 123–403. [Google Scholar] [CrossRef]
- Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and Kinetics of Slip; Volume 19, Progress in Material Science; Pergamon Press: Oxford, UK, 1975. [Google Scholar]
- Mecking, H.; Kocks, U. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Holt, D.L. Dislocation cell formation in metals. J. Appl. Phys. 1970, 41, 3197. [Google Scholar] [CrossRef]
- Bergström, Y. The plastic deformation of metals—A dislocation model and its applicability. Rev. Powder Metall. Phys. Ceram. 1983, 2, 79–265. [Google Scholar]
- Militzer, M.; Sun, W.P.; Jonas, J.J. Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall. Et Mater. 1994, 42, 133. [Google Scholar] [CrossRef]
- Sandstrom, R.; Lagneborg, R. A model for hot working occurring by recrystallization. Acta Metall. 1975, 23, 387. [Google Scholar] [CrossRef]
- Mecking, H.; Estrin, Y. The effect of vacancy generation on plastic deformation. Scr. Metall. 1980, 14, 815. [Google Scholar] [CrossRef]
- Thomas, J.P.; Semiatin, S.L. Mesoscale modelling of the Recrystallization of Waspaloy and Application to the Simulation of the Ingot-Cogging Process. In Materials Science and Technology (MS&T) 2006, Processing; TMS: Warrendale, PA, USA, 2016; pp. 609–619. [Google Scholar]
- Pietrzyk, M.; Jedrzejewski, J. Identification of Parameters in the History Dependent Constitutive Model for Steels. CIRP Ann. Manuf. Technol. 2001, 50, 161–164. [Google Scholar] [CrossRef]
- Montheillet, F.; Jonas, J.J. Fundamentals of modelling for Metals Processing; ASM International: Materials Park, OH, USA, 2009; Volume 22A, pp. 220–231. [Google Scholar]
- Charles Murgau, C.; Pederson, R.; Lindgren, L. A model for Ti–6Al–4V microstructure evolution for arbitrary temperature changes. Model. Simul. Mater. Sci. Eng. 2012, 20, 055006. [Google Scholar] [CrossRef]
- Lütjering, G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A 1998, 243, 32–45. [Google Scholar] [CrossRef]
- Williams, J.C.; Lütjering, G. Titanium; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Semiatin, S.L.; Seetharaman, V.; Weiss, I. Flow behavior and globularization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure. Mater. Sci. Eng. A 1999, 263, 257. [Google Scholar] [CrossRef]
- Semiatin, S.L.; Seetharaman, V.; Ghosh, A.K. Plastic flow, microstructure evolution, and defect formation during primary hot working of titanium and titanium aluminide alloys with lamellar colony microstructures. Philos. Trans. Math. Phys. Eng. Sci. 1999, 357, 1487–1512. [Google Scholar] [CrossRef]
- Seetharaman, V.; Semiatin, S.L. Effect of the lamellar grain size on plastic flow behavior and microstructure evolution during hot working of a gamma titanium aluminide alloy. Metall. Mater. Trans. A 2002, 33A, 3817. [Google Scholar] [CrossRef]
- Thomas, R.B.; Nicolaou, P.D.; Semiatin, S.L. An Experimental and Theoretical Investigation of the Effect of Local Colony Orientations and Misorientation on Cavitation during Hot Working of Ti-6Al-4V. Metall. Mater. Trans. A 2005, 36A, 129. [Google Scholar]
- Johnson, W.; Mehl, R. Reaction Kinetics in Processes of Nucleation and Growth. Trans. Soc. Pet. Eng. 1939, 135, 416. [Google Scholar]
- Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7, 1103–1112. [Google Scholar] [CrossRef]
- Kolmogorov, A. A statistical theory for the recrystallisation of metals, Akad Nauk SSSR, Izv. Izv. Akad. Nauk. SSSR 1937, 3, 355. [Google Scholar]
- Ahmed, T.; Rack, H.J. Phase transformations during cooling in [alpha]+[beta] titanium alloys. Mater. Sci. Eng. A 1998, 243, 206–211. [Google Scholar] [CrossRef]
- Lu, S.; Qian, M.; Tang, H.; Yan, M.; Wang, J.; StJohn, D. Massive transformation in Ti–6Al–4V additively manufactured by selective electron beam melting. Acta Mater. 2016, 104, 303–311. [Google Scholar] [CrossRef]
- Kelly, S.M. Thermal and Microstructure modelling of Metal Deposition Processes with Application to Ti-6Al-4V. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2004. [Google Scholar]
- Kelly, S.M.; Babu, S.S.; David, S.A.; Zacharia, T.; Kampe, S.L. A microstructure model for laser processing of Ti-6Al-4V. In 24th International Congress on Applications of Lasers and Electro-Optics, ICALEO 2005; Laser Institute of America: Orlando, FL, USA; OMiami, FL, USA, 2005; pp. 489–496. [Google Scholar]
- Wachtman, J.B.; Tefft, W.E.; Lam, D.G.; Apstein, C.S. Exponential Temperature Dependence of Young’s Modulus for Several Oxides. Phys. Rev. 1961, 122, 1754–1759. [Google Scholar] [CrossRef]
- Fukuhara, M.; Sanpei, A. Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature. J. Mater. Sci. Lett. 1993, 12, 1122–1124. [Google Scholar] [CrossRef]
- Swarnakar, A.K.; der Biest, O.V.; Baufeld, B. Thermal expansion and lattice parameters of shaped metal deposited Ti–6Al–4V. J. Alloy. Compd. 2011, 509, 2723–2728. [Google Scholar] [CrossRef]
- Boivineau, M.; Cagran, C.; Doytier, D.; Eyraud, V.; Nadal, M.; Wilthan, B.; Pottlacher, G. Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy. Int. J. Thermophys. 2006, 27, 507–529. [Google Scholar] [CrossRef]
- Mills, K.C. Recommended Values of Thermophysical Properties for Selected Commercial Alloys; Woodhead Publishing: Cambridge, UK, 2002. [Google Scholar]
- Bouaziz, O.; Buessler, P. Iso-work Increment Assumption for Heterogeneous Material Behaviour Modelling. Adv. Eng. Mater. 2004, 6, 79–83. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Heigel, J.C.; Michaleris, P.; Palmer, T. Effect of inter-layer dwell time on distortion and residual stress in additive manufacturing of titanium and nickel alloys. J. Mater. Process. Technol. 2015, 215, 123–131. [Google Scholar] [CrossRef]
- Lundbäck, A.; Lindgren, L.E. Modelling of metal deposition. Finite Elem. Anal. Des. 2011, 47, 1169–1177. [Google Scholar] [CrossRef]
- Goldak, J.; Chakravarti, A.; Bibby, M. A new finite element model for welding heat sources. Metall. Trans. B 1984, 15, 299–305. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Denlinger, E.R.; Michaleris, P. Effect of stress relaxation on distortion in additive manufacturing process modelling. Addit. Manuf. 2016, 12, 51–59. [Google Scholar] [CrossRef] [Green Version]
F1 | |
F2 | |
F3 |
D1 | |
D2 | |
D3 |
0 s (comp) | 20 s (comp) | 40 s (comp) | |
---|---|---|---|
Final displacement [mm] | 1.2 (1.2) | 1.6 (1.6) | 2.0 (1.7) |
Slope of linear region [10mm/s] | 3.4 (−0.2) | 3.7 (1.1) | 3.2 (1.4) |
Time at 1st Peak [s] | 110 (140) | 170 (230) | 150 (300) |
Amplitude at 1st Peak [10mm] | 3.5 (3.8) | 7.6 (7.0) | 6.4 (6.9) |
Amplitude at start of linear region [10mm] | 1.0 (0.9) | 6.2 (8.4) | 6.6 (6.1) |
Amplitude at end of linear region [10mm] | 0.1 (0.4) | 1.1 (0.8) | 2.4 (2.1) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babu, B.; Lundbäck, A.; Lindgren, L.-E. Simulation of Ti-6Al-4V Additive Manufacturing Using Coupled Physically Based Flow Stress and Metallurgical Model. Materials 2019, 12, 3844. https://doi.org/10.3390/ma12233844
Babu B, Lundbäck A, Lindgren L-E. Simulation of Ti-6Al-4V Additive Manufacturing Using Coupled Physically Based Flow Stress and Metallurgical Model. Materials. 2019; 12(23):3844. https://doi.org/10.3390/ma12233844
Chicago/Turabian StyleBabu, Bijish, Andreas Lundbäck, and Lars-Erik Lindgren. 2019. "Simulation of Ti-6Al-4V Additive Manufacturing Using Coupled Physically Based Flow Stress and Metallurgical Model" Materials 12, no. 23: 3844. https://doi.org/10.3390/ma12233844
APA StyleBabu, B., Lundbäck, A., & Lindgren, L. -E. (2019). Simulation of Ti-6Al-4V Additive Manufacturing Using Coupled Physically Based Flow Stress and Metallurgical Model. Materials, 12(23), 3844. https://doi.org/10.3390/ma12233844