Study of Infrared Laser Parameters on Surface Morphology and Hydrophobic Properties
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ueda, E.; Lev kin, P.A. Micro patterns: Emerging applications of superhydrophilic–superhydrophobic Micropatterns. Adv. Mater. 2013, 25, 1234–1247. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Sho, W.; Hiroya, M.; Koji, F. Drag-reducing performance of obliquely aligned super hydrophobic surface in turbulent channel flow. Fluid. Dyn. Res. 2017, 49, 1–20. [Google Scholar]
- Zhang, H.F.; Tuo, Y.J.; Wang, Q.C.; Jin, B.J.; Yin, L.; Liu, X.W. Fabrication and drag reduction of super hydrophobic surface on steel substrates. Surf. Eng. 2018, 34, 596–602. [Google Scholar] [CrossRef]
- Chen, T.C.; Yan, W.; Liu, H.T.; Zhu, W.; Guo, K.J.; Li, J.D. Facile preparation of superamphiphobic phosphate–Cu coating on iron substrate with mechanical stability, anti-frosting properties, and corrosion resistance. J. Mater. Sci. 2017, 52, 4675–4688. [Google Scholar] [CrossRef]
- Wang, E.Q.; Wang, H.Y.; Hu, Y.; Liu, Z.J.; Zhu, Y.J. Corrosion-resistant engineering superhydrophobic and superoleophilic bulk materials with oil–water separation property. J. Mater. Sci. 2017, 52, 7130–7139. [Google Scholar] [CrossRef]
- Rezayi, T.; Mohammad, H.E. Fabrication of superhydrophobic iron with anti-corrosion property by ultrasound. Surf. Coat. Technol. 2017, 309, 795–804. [Google Scholar] [CrossRef]
- Li, J.Y.; Lu, S.X.; Xu, W.G.; He, G.; Yu, T.L.; Cheng, Y.Y.; Wu, B. Fabrication of stable Ni-AlNi-AlO superhydrophobic surface on aluminum substrate for self-cleaning, anti-corrosive and catalytic performance. J. Mater. Sci. 2018, 53, 1097–1109. [Google Scholar] [CrossRef]
- Luo, H.; Yin, S.H.; Zhang, G.H.; Tang, Q.C.; Gen, J.X.; Huang, S. Study of superhydrophobic surface in self-cleaning of magnetorheological fluid. J. Mater. Sci. 2018, 53, 1769–1780. [Google Scholar] [CrossRef]
- Shashank, S.; Shin, Y.C. Superhydrophobic contoured surfaces created on metal and polymer using a femtosecond laser. Appl. Surf. Sci. 2017, 405, 465–475. [Google Scholar]
- Farshchian, B.; Gatabi, J.R.; Bernick, S.M. Laser-induced superhydrophobic grid patterns on PDMS for droplet arrays formation. Appl. Surf. Sci. 2017, 396, 359–365. [Google Scholar] [CrossRef]
- Huang, C.; Ye, X.; Yang, X.H.; Yao, A.F.; Fan, Z.M. Preparation of a superhydrophobic aluminium alloy surface by UV laser. Surf. Eng. 2017. [Google Scholar] [CrossRef]
- Taghvaei, E.; Moosavi, A.; Nouri-Borujerdi, A. Superhydrophobic surfaces with a dual-layer micro and nano-particle coating for drag reduction. Energy 2017, 125, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wu, J.T.; Yang, S.Y. Direct fabricating patterns using stamping transfer process with PDMS mold of hydrophobic nanostructures on surface of micro cavity. Microelectron. Eng. 2011, 88, 849–854. [Google Scholar] [CrossRef]
- Nokes, J.M.; Sharma, H.; Tu, R.; Kim, M.Y.; Chu, M.; Siddiqui, A.; Khine, M. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching. Materials 2016, 9, 196. [Google Scholar] [CrossRef]
- Song, J.L.; Xu, W.J.; Liu, X.; Lu, Y.; Sun, J. Electrochemical machining of super-hydrophobic Al surfaces and effect of processing parameters on wettability. App. Phys. A Mater. Sci. Process. 2012, 108, 559–568. [Google Scholar] [CrossRef]
- Sabry, R.S.; Al-Mosawi, M.I. Novel approach to fabricate a stable superhydrophobic polycarbonate. Surf. Eng. 2018, 34, 151–157. [Google Scholar] [CrossRef]
- Tam, J.; Palumbo, G.; Erb, U. Recent Advances in Superhydrophobic Electrodeposits. Materials 2016, 9, 151. [Google Scholar] [CrossRef]
- Vizhi, M.E.; Vanithakumari, S.C.; George, R.P.; Vasantha, S.; Mudali, U.K. Super-hydrophobic coating on modified 9Cr–1Mo ferritic steel using perfluorooctyltriethoxy silane. Surf. Eng. 2016, 32, 139–146. [Google Scholar] [CrossRef]
- Kinoshita, H.; Ogasahara, A.; Fukuda, Y.; Ohmae, N. Superhydrophobic/Superhydrophilic micropatterning on a carbon nanotube film using a laser plasma-type hyperthermal atom beam facility. Carbon 2010, 48, 4403–4408. [Google Scholar] [CrossRef]
- Huang, J.W.; Qing, Y.Q.; Hu, C.B.; Wang, F.L.; Mo, Q. Development of a simple method for the fabrication of superhydrophobic coating of nano TiO2/CaCO3 composite. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 1125–1128. [Google Scholar]
- Li, B.J.; Li, H.; Huang, L.J.; Ren, N.F.; Kong, X. Femtosecond pulsed laser text-ured titanium surfaces with stable superhydrophilicity and superhydrophobicity. Appl. Surf. Sci. 2016, 389, 585–593. [Google Scholar] [CrossRef]
- Zuhlke, C.A.; Anderson, T.P.; Alexander, D.R. Fundamentals of layered nanoparticle covered pyramidal structures formed on nickel during femtosecond laser surface interactions. Appl. Surf. Sci. 2013, 283, 648–653. [Google Scholar] [CrossRef]
- Li, X.H.; Yuan, C.H.; Yang, H.D.; Li, J.W.; Huang, W.H.; Tang, D.C.; Xu, Q. Morphology and composition on Al surface irradiated by femtosecond laser pulses. Appl. Surf. Sci. 2010, 256, 4344–4349. [Google Scholar] [CrossRef]
- Rafieazad, M.; Jaffer, J.A.; Cui, C.; Duan, X.; Nasiri, A. Nanosecond Laser Fabrication of Hydrophobic Stainless Steel Surfaces: The Impact on Microstructure and Corrosion Resistance. Materials 2018, 11, 1577. [Google Scholar] [CrossRef]
- Aguilar-Morales, A.I.; Alamri, S.; Voisiat, B.; Kunze, T.; Lasagni, A.F. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning. Materials 2019, 12, 2737. [Google Scholar] [CrossRef]
- Lavieja, C.; Oriol, L.; Peña, J.I. Creation of superhydrophobic and superhydrophilic surfaces on ABS employing a nanosecond laser. Materials 2018, 11, 2547. [Google Scholar] [CrossRef]
- Kawamura, Y.; Nakafuji, T. Fabrication of Cotton-like Superhydrophobic Surface on Teflon Using a Pulsed Ultraviolet Laser. J. Laser Micro Nanoeng. 2010, 5, 134–137. [Google Scholar] [CrossRef]
- Moradi, S.; Kamal, S.; Englezos, P.; Hatzikiriakos, S.G. Femtosecond laser irradiation of metallic surfaces: Effects of laser parameters on Super hydrophobicity. Nanotechnology 2013, 24, 415302. [Google Scholar] [CrossRef]
- Tang, M.K.; Huang, X.J.; Yu, J.G.; Li, X.W.; Zhang, Q.X. Simple fabrication of large-area corrosion resistant superhydrophobic surface with high mechanical strength property on TiAl-based composite. J. Mater. Process. Technol. 2017, 239, 178–186. [Google Scholar] [CrossRef]
- Ta, V.D.; Dunn, A.; Wasley, T.J.; Li, J.; Kay, R.W.; Stringer, J.; Smith, P.J.; Esenturk, E.; Connaughton, C.; Shephard, J.D. Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. App. Surf. Sci. 2016, 365, 153–159. [Google Scholar] [CrossRef]
- Song, Y.X.; Wang, C.; Dong, X.R.; Yin, K.; Zhang, F.; Xie, Z.; Chu, D.K.; Duan, J.A. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser. Opt. Laser Technol. 2018, 102, 25–31. [Google Scholar] [CrossRef]
- Tanvir Ahmmed, K.M.; Grambow, C.; Kietzig, A.-M. Fabrication of Micro/Nano Structures on Metals by Femtosecond Laser Micromachining. Micromachines 2014, 5, 1219–1253. [Google Scholar] [CrossRef]
- Kim, S.H. Fabrication of Superhydrophobic Surfaces. J. Adhes. Sci. Technol. 2008, 22, 235–250. [Google Scholar] [CrossRef]
- Tang, M.K.; Huang, X.J.; Guo, Z.; Yu, J.G.; Li, X.W.; Zhang, Q.X. Fabrication of robust and stable superhydrophobic surface by a convenient, low-cost and efficient laser marking approach. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 449–456. [Google Scholar] [CrossRef]
- Cai, Y.K.; Chang, W.L.; Luo, X.C. Superhydrophobic structures on 316L stainless steel surfaces machined by nanosecond pulsed laser. Precis. Eng. 2018, 52, 266–275. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.X.; Tsubaki, A.; Zuhlke, C.; Rezaei, E.; Gogos, G.; Alexander, D.R.; Shield, J.E. Effect of topology and material properties on the imprint quality of the femtosecond-laser-induced surface structures. J. Mater. Sci. 2018, 53, 3836–3845. [Google Scholar] [CrossRef]
- Milionis, A.; Loth, E.; Bayer, I.S. Recent advances in the mechanical durability of superhydrophobic materials. Adv. Colloid Interface Sci. 2016, 229, 57–79. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, X.; Gu, J.; Fan, Z.; Yang, X.; Xu, W. Study of Infrared Laser Parameters on Surface Morphology and Hydrophobic Properties. Materials 2019, 12, 3860. https://doi.org/10.3390/ma12233860
Ye X, Gu J, Fan Z, Yang X, Xu W. Study of Infrared Laser Parameters on Surface Morphology and Hydrophobic Properties. Materials. 2019; 12(23):3860. https://doi.org/10.3390/ma12233860
Chicago/Turabian StyleYe, Xia, Jiang Gu, Zhenmin Fan, Xiaohong Yang, and Wei Xu. 2019. "Study of Infrared Laser Parameters on Surface Morphology and Hydrophobic Properties" Materials 12, no. 23: 3860. https://doi.org/10.3390/ma12233860
APA StyleYe, X., Gu, J., Fan, Z., Yang, X., & Xu, W. (2019). Study of Infrared Laser Parameters on Surface Morphology and Hydrophobic Properties. Materials, 12(23), 3860. https://doi.org/10.3390/ma12233860