Experimental Assessment of the Fire Resistance Mechanisms of Timber–Steel Composites
Abstract
:1. Introduction
Literature Review
2. Materials and Experiments
2.1. Materials and Major Structure
2.2. Specimens
2.3. Testing Machine
3. Methodology
3.1. Charring Depth Based on Eurocode 5
3.2. Charring Depth Modified by the Average Charring Area Method
3.3. Maximum Charring Depth
4. Results
4.1. Experimental Results
4.1.1. Temperature Tracking by Thermocouple
4.1.2. Failure Modes
4.2. Comparison of Different Assessment Models
4.2.1. Charring Depth
4.2.2. Charring Rate
4.3. Evaluation of Effective Cross-Sections Based on Different Methods
5. Discussion
5.1. Effect of Timber Material on TSC
5.2. Effect of the Connection Method on TSC
5.3. Assessment of Anisotropic Model
5.4. Future Applications and Improvements
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loss, C.; Frangi, A. Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms. Eng. Struct. 2017, 138, 229–244. [Google Scholar] [CrossRef]
- Keipour, N.; Valipour, H.R.; Bradford, M.A. Experimental study of steel-timber composite (STC) beam to steel column joints having a flush end-plate. Eng. Struct. 2018, 174, 906–918. [Google Scholar] [CrossRef]
- Pernigotto, G.; Prada, A.; Patuzzi, F.; Baratieri, M.; Gasparella, A. Characterization of the dynamic thermal properties of the opaque elements through experimental and numerical tests. Energy Procedia 2015, 78, 3234–3239. [Google Scholar] [CrossRef]
- Caniato, M.; Bettarello, F.; Ferluga, A.; Marsich, L.; Schmid, C.; Fausti, P. Acoustic of Lightweight Timber Buildings: A Review. Renew. Sustain. Energy Rev. 2017, 80, 585–596. [Google Scholar] [CrossRef]
- Tsai, M.; Koshihara, M. The study and proposed application of the multi-storey hybrid timber structural system on the design flexibility and hazard prevention. In Proceedings of the World Conference on Timber Engineering, Quebec City, QC, Canada, 10–14 August 2014. [Google Scholar]
- Winter, W.; Tavoussi, K.; Pixner, T.; Parada, F.R. Timber-steel-hybrid beams for multi-storey buildings. In Proceedings of the World Conference on Timber Engineering, Auckland, New Zealand, 15–19 July 2012. [Google Scholar]
- Riola-Parada, F. Timber-Steel Hybrid Beams for Multi-Storey Buildings. Ph.D. Thesis, Vienna University of Technology, Vienna, Austria, 2016. Available online: https://www.researchgate.net/publication/331355241_Timber-Steel_Hybrid_Beams_for_Multi-Storey_Buildings (accessed on 1 December 2016).
- Jasieńko, J.; Nowak, T.P. Solid timber beams strengthened with steel plates–Experimental studies. Constr. Build. Mater. 2014, 63, 81–88. [Google Scholar] [CrossRef]
- Franke, S.; Franke, B.; Harte, A.M. Failure modes and reinforcement techniques for timber beams–State of the art. Specif. Issue Reinf. Timber Struct. 2015, 97, 2–13. [Google Scholar] [CrossRef]
- Koshihara, M.; Nagamura, H.; Isoda, H.; Kirino, Y. A Study of five Storied Timber Based Hybrid Building for Practical Use (Part 3 Properties of Structural Elements); Architectural Institute of Japan: Tokyo, Japan, 2005. [Google Scholar]
- Tsai, M.; Le, H. Determination of Initial Stiffness of Timber–Steel Composite (TSC) Beams Based on Experiment and Simulation Modeling. Sustainability 2018, 10, 1220. [Google Scholar] [CrossRef]
- Hassanieh, A.; Valipour, H.R.; Bradford, M.A. Experimental and numerical study of steel-timber composite (STC) beams. J. Constr. Steel Res. 2016, 122, 367–378. [Google Scholar] [CrossRef]
- Hassanieh, A.; Valipour, H.R.; Bradford, M.A.; Sandhaas, C. Modelling of steel-timber composite connections: Validation of finite element model and parametric study. Eng. Struct. 2017, 138, 35–49. [Google Scholar] [CrossRef]
- Loss, C.; Piazza, M.; Zandonini, R. Connections for steel–timber hybrid prefabricated buildings. Part I: Experimental tests. Constr. Build. Mater. 2016, 122, 781–795. [Google Scholar] [CrossRef]
- Nouri, F.; Bradford, M.; Valipour, H. Steel–timber composite beam-to-column connections with shear tab. J. Struct. Eng. 2018, 145, 04018268. [Google Scholar] [CrossRef]
- Izumi, B.; Tani, A.; Toba, N.; Nakashima, K.; Koshihara, M.; Yamanashi, T.; Kohno, M.; Winter, W. Fire Performances of Timber-Cold Formed Thin Steel Plate Composite Beam. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; pp. 4454–4461. Available online: http://repositum.tuwien.ac.at/obvutwoa/content/pageview/1649844.
- Schaffer, E.L.; Forest Products Laboratory (U.S.). A Simplified Test for Adhesive Behavior in Wood Sections Exposed to Fire; Forest Products Laboratory: Madison, WI, USA, 1968. [Google Scholar]
- Babrauskas, V. Charring rate of wood as a tool for fire investigations. Fire Saf. J. 2005, 40, 528–554. [Google Scholar] [CrossRef]
- Mena, J.; Vera, S.; Correal, J.F.; Lopez, M. Assessment of fire reaction and fire resistance of Guadua angustifolia kunth bamboo. Constr. Build. Mater. 2012, 27, 60–65. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, L.; Harries, K.A.; Zhang, F.; Liu, Q.; Feng, J. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Constr. Build. Mater. 2015, 96, 416–427. [Google Scholar] [CrossRef]
- Findorák, R.; Fröhlichová, M.; Legemza, J.; Findoráková, L. Thermal degradation and kinetic study of sawdusts and walnut shells via thermal analysis. J. Therm. Anal. Calorim. 2016, 125, 689–694. [Google Scholar] [CrossRef]
- Harada, T.; Kamikawa, D.; Miyamoto, K.; Ohuchi, T.; Miyabayashi, M.; Ando, K.; Hattori, N. Development of Fireproof Glued-Laminated Timber for Use in Medium-Rise Buildings in Japan. In Cruz (ed) Structure and architecture; Taylor & Francis: London, UK, 2010; pp. 365–371. [Google Scholar]
- Zhang, B.; Xuan, Z.; Iain, S.; Tony, K. Structural Fire Design of Tall Timber Buildings Using Cross Laminated Timber (CLT) to Eurocodes. In Proceedings of the World Conference on Timber Engineering, Vienna, Austria, 22–25 August 2016; pp. 5445–5454. [Google Scholar]
- Barber, D. Determination of fire resistance ratings for glulam connectors within US high rise timber buildings. Fire Saf. J. 2017, 91, 579–585. [Google Scholar] [CrossRef]
- European Committee for Standardization. Eurocode 5: Design of Timber Structure; BSI: Brussels, Belgium, 1994. [Google Scholar]
- Cachim, P.; Franssen, J.-M. Assessment of Eurocode 5 Charring Rate Calculation Methods. Fire Technol. 2010, 46, 169–181. [Google Scholar] [CrossRef]
- Hideo, O.; Hirokazu, O.; Jun-Ichi, Y.; Nagao, H. A Study on Self-charring-stop of Glued Laminate Timber Made of Japanese Cedar Installing Mortar Pieces. Bull. Jpn. Assoc. Fire Sci. Eng. 2008, 58, 13–20. [Google Scholar]
- Le, H.; Tsai, M. Behavior of Timber-Steel Composite with Dowel Connection under Fire. Key Eng. Mater. 2019, 803, 195–199. [Google Scholar] [CrossRef]
- Martinka, J.; Rantuch, P.; Liner, M. Calculation of charring rate and charring depth of spruce and pine wood from mass loss. J. Therm. Anal. Calorim. 2018, 132, 1105–1113. [Google Scholar] [CrossRef]
- White, R.H.; Nordheim, E.V. Charring rate of wood for ASTM E 119 exposure. Fire Technol. 1992, 28, 5–30. [Google Scholar] [CrossRef]
- White, R.H. Charing rate of composite timber products. In The Proceedings of Wood & Fire Safety 2000 (Part One); Technical University of Zvolen: Zvolen, Slovakia; NIKARA Krupina: Zvolen, Slovakia, 2000. [Google Scholar]
- White, R.H. Analytical Methods for Determining Fire Resistance of Timber Members. In SFPE Handbook of Fire Protection Engineering; Hurley, M.J., Gottuk, D.T., Hall, J.R., Jr., Harada, K., Kuligowski, E.D., Puchovsky, M., Torero, J.L., Watts, J.M., Jr., Wieczorek, C.J., Eds.; Springer: New York, NY, USA, 2016; pp. 1979–2011. [Google Scholar] [CrossRef]
- ASTM E119-18ce1. Standard Test Methods for Fire Tests of Building Construction and Materials; ASTM International: West Conshohocken, PA, USA, 2018; Available online: https://www.astm.org/ (accessed on 02 June 2019).
- Harmathy, T.Z.; Sultan, M.A. Correlation between the severities of the ASTM E119 and ISO 834 fire exposures. Fire Saf. J. 1988, 13, 163–168. [Google Scholar] [CrossRef]
- CNS Standard, CNS 12514. Fire Resistant Examination for Building Structural Element; Bureau of Standards, Metrology and Inspection, Ministry of Economic Affairs (MOEA): Taipei, Taiwan, 2002.
- Schmid, J.; Just, A.; Klippel, M.; Fragiacomo, M. The Reduced Cross-Section Method for Evaluation of the Fire Resistance of Timber Members: Discussion and Determination of the Zero-Strength Layer. Fire Technol. 2015, 51, 1285–1309. [Google Scholar] [CrossRef]
- Lange, D.; Boström, L.; Schmid, J.; Albrektsson, J. The Reduced Cross Section Method Applied to Glulam Timber Exposed to Non-standard Fire Curves. Fire Technol. 2015, 51, 1311–1340. [Google Scholar] [CrossRef]
- ISO 834-1:1999. Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements; International Organization for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- Frangi, A.; Fontana, M. Charring rates and temperature profiles of wood sections. Fire Mater. 2003, 27, 91–102. [Google Scholar] [CrossRef]
- Brandon, D.; Maluk, C.; Ansell, M.P.; Harris, R.; Walker, P.; Bisby, L.; Bregulla, J. Fire performance of metal-free timber connections. Proc. Inst. Civ. Eng.-Constr. Mater. 2015, 168, 173–186. [Google Scholar] [CrossRef] [Green Version]
DO | DB | CO | CB |
TSC with Douglas fir By glue connection | TSC with Douglas fir By dowel connection | TSC with Cedar By glue connection | TSC with Cedar By dowel connection |
Type of Timber | β0 mm/min | βn mm/min |
---|---|---|
Glued laminated timber with a characteristic density of >290 kg/m3 | 0.65 | 0.7 |
Solid timber with a characteristic density of >290 kg/m3 | 0.65 | 0.8 |
Name | Glue | With 2 Bolts | ||||
---|---|---|---|---|---|---|
Specimen 1 | Specimen 2 | Specimen 3 | Specimen 1 | Specimen 2 | Specimen 3 | |
Case | Remain Area (mm2) | Area of Char (mm2) | Ratio of Char | Ratio of Char | Highest Temperature at Flange (°C) |
---|---|---|---|---|---|
DO1 | 20,004 | 29,996 | 60.0 | 85.7 | 305 |
DO2 | 26,286 | 23,714 | 47.4 | 67.8 | 326 |
DO3 | 26,103 | 23,897 | 47.8 | 68.3 | 220 |
DB1 | 16,893 | 33,107 | 66.2 | 94.6 | 389 |
DB2 | 17,906 | 32,094 | 64.2 | 91.7 | -- |
DB3 | 20,775 | 29,225 | 58.5 | 83.5 | 213 |
CO1 | 20,681 | 29,319 | 58.6 | 83.8 | 417 |
CO2 | 21,009 | 28,991 | 58.0 | 82.8 | 170 |
CO3 | 21,549 | 28,451 | 56.9 | 81.3 | 486 |
CB1 | 17,197 | 32,803 | 65.6 | 93.7 | 367 |
CB2 | 24,301 | 25,699 | 51.4 | 73.4 | 363 |
CB3 | 19,513 | 30,487 | 61.0 | 87.1 | 343 |
Case | Highest Temperature at Flanges | Damage at the Web | Damage at the Flange | Failure Modes |
---|---|---|---|---|
DO1 | t > 300 °C (high) | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
DO2 | t > 300 °C (high) | dchar,max < 5 cm (within) | dchar,max < 5 cm (within) | Failed |
DO3 | t < 300 °C (low) | dchar,max < 5 cm (within) | dchar,max < 5 cm (within) | Satisfied |
DB1 | t > 350 °C (very high) | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
DB2 | ----- | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
DB3 | t < 300 °C (low) | dchar,max < 5 cm (within) | dchar,max < 5 cm (within) | Satisfied |
CO1 | t > 350 °C (very high) | dchar,max < 5 cm (within) | dchar,max > 5 cm (exceed) | Failed |
CO2 | t < 300 °C (low) | dchar,max < 5 cm (within) | dchar,max < 5 cm (within) | Satisfied |
CO3 | t > 350 °C (very high) | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
CB1 | t > 350 °C (very high) | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
CB2 | t > 350 °C (very high) | dchar,max > 5 cm (exceed) | dchar,max > 5 cm (exceed) | Failed |
CB3 | t > 300 °C (high) | dchar,max < 5 cm (within) | dchar,max < 5 cm (within) | Failed |
Case | Average Charring Area Model | Specified Model (Euro Code 5) | Maximum Charring Depth Model | |||
---|---|---|---|---|---|---|
dchar,average (mm) | β(average) (mm/min) | dchar,n (mm) | βn (mm/min) | dchar,max (mm) | βTSC(max) (mm/min) | |
DO1 | 40.69 | 0.68 | 42 | 0.7 | 60 | 1.00 |
DO2 | 30.48 | 0.53 | 42 | 0.7 | 44 | 0.73 |
DO3 | 30.76 | 0.55 | 42 | 0.7 | 43 | 0.72 |
DB1 | 46.32 | 0.77 | 42 | 0.7 | 54 | 0.90 |
DB2 | 44.44 | 0.74 | 42 | 0.7 | 56 | 0.93 |
DB3 | 39.36 | 0.66 | 42 | 0.7 | 50 | 0.85 |
CO1 | 39.52 | 0.66 | 42 | 0.7 | 53 | 0.88 |
CO2 | 38.96 | 0.65 | 42 | 0.7 | 50 | 0.83 |
CO3 | 38.05 | 0.61 | 42 | 0.7 | 52 | 0.88 |
CB1 | 45.75 | 0.74 | 42 | 0.7 | 56 | 0.93 |
CB2 | 33.56 | 0.60 | 42 | 0.7 | 59 | 0.98 |
CB3 | 41.55 | 0.69 | 42 | 0.7 | 51 | 0.85 |
Case | Specified Model (EU5) dchar,n (mm) | Efficient Cross-Section (EU5) def (mm) | Average Charring Area Model dchar,average (mm) | Max. Charring Depth Model dchar,max (mm) |
---|---|---|---|---|
DO1 | 42 | 49 | 40.69 | 60 |
DO2 | 42 | 49 | 30.48 | 44 |
DO3 | 42 | 49 | 30.76 | 43 |
DB1 | 42 | 49 | 46.32 | 54 |
DB2 | 42 | 49 | 44.44 | 56 |
DB3 | 42 | 49 | 39.36 | 50 |
CO1 | 42 | 49 | 39.52 | 53 |
CO2 | 42 | 49 | 38.96 | 50 |
CO3 | 42 | 49 | 38.05 | 52 |
CB1 | 42 | 49 | 45.75 | 56 |
CB2 | 42 | 49 | 33.56 | 59 |
CB3 | 42 | 49 | 41.55 | 51 |
Case | Average Charring Area Model (mm/min) | Specified Model (EU5) (mm/min) | White’s Model (mm/min) | Max. Charring Depth Model (mm/min) |
---|---|---|---|---|
DO | 0.58 | 0.7 | 0.654 | 0.82 |
DB | 0.72 | 0.7 | 0.654 | 0.89 |
CO | 0.64 | 0.7 | 0.654 | 0.86 |
CB | 0.68 | 0.7 | 0.654 | 0.92 |
Name | Glue (Without Bolts) | With 2 Bolts | ||||
---|---|---|---|---|---|---|
Specimen 1 | Specimen 2 | Specimen 3 | Specimen 4 | Specimen 5 | Specimen 6 | |
temp | 305 °C | 326 °C | 220.4 °C | 388.6 °C | -- | 212.7 °C |
temp | 416.8 °C | 170.1 °C | 486 °C | 366.9 °C | 362.8 °C | 343.1 °C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.D.H.; Tsai, M.-T. Experimental Assessment of the Fire Resistance Mechanisms of Timber–Steel Composites. Materials 2019, 12, 4003. https://doi.org/10.3390/ma12234003
Le TDH, Tsai M-T. Experimental Assessment of the Fire Resistance Mechanisms of Timber–Steel Composites. Materials. 2019; 12(23):4003. https://doi.org/10.3390/ma12234003
Chicago/Turabian StyleLe, Truong Di Ha, and Meng-Ting Tsai. 2019. "Experimental Assessment of the Fire Resistance Mechanisms of Timber–Steel Composites" Materials 12, no. 23: 4003. https://doi.org/10.3390/ma12234003
APA StyleLe, T. D. H., & Tsai, M.-T. (2019). Experimental Assessment of the Fire Resistance Mechanisms of Timber–Steel Composites. Materials, 12(23), 4003. https://doi.org/10.3390/ma12234003