Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads
Abstract
:1. Introduction
2. Methods
2.1. Bacterial Strain and Culture Conditions
2.2. Preparing Lawn Biofilms
2.3. Preparation of Antibiotic-Loaded Calcium Sulfate Beads (ALCSB)
2.4. Killing of Lawn Biofilms Using Antibiotic Beads
2.5. Killing of Lawn Biofilms by Antibiotics Impregnated on Filter Paper Discs
2.6. Effect of ALCSB Arrangements on Killing of Lawn Biofilms
2.7. Determination of Killing of Biofilms Using Replica Plating Technique
2.8. Image Analysis to Determine the Influence of Bead Number on Killing of Lawn Biofilms
2.9. Antibiotic Carryover During Replica Plating
2.10. Estimation of Antibiotic Concentration Eluted
3. Statistical Analysis
4. Results
4.1. Killing of Lawn Biofilms by ALCSB
4.2. Evidence of Antibiotic-Resistant Phenotypes
4.3. Killing of PA-Xen41 and SA-SAP231 Lawn Biofilms by Systematic Arrangement of ALCSB
4.4. Replica Plating to Determine Complete Killing or Regrowth after ALCSB Treatment
4.5. Image Analysis to Determine the Influence of Bead Number on Killing of Lawn Biofilms
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zmistowski, B.; Fedorka, C.J.; Sheehan, E.; Deirmengian, G.; Austin, M.S.; Parvizi, J. Prosthetic Joint Infection Caused by Gram-Negative Organisms. J. Arthroplast. 2011, 26, 104–108. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Humphrey, B.J.; Wang, Y.F.; Kourbatova, E.V.; Ray, S.M.; Blumberg, H.M. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann. Int. Med. 2006, 144, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, G.J.; Amii, R.N.; Abrahamian, F.M.; Talan, D.A. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 2005, 11, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Daum, R.S. Skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 2007, 357, 380–390. [Google Scholar] [CrossRef]
- Corey, G.R. Staphylococcus aureus bloodstream infections: Definitions and treatment. Clin. Infect. Dis. 2009, 48, S254–S259. [Google Scholar] [CrossRef] [Green Version]
- Chickering, H.T.; Park, J.H. Staphylococcus aureus pneumonia. JAMA 1919, 72, 617–626. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Leone, S. Prosthetic joint infections: Microbiology, diagnosis, management and prevention. Int. J. Antimicrob. Agents 2008, 32, 287–293. [Google Scholar] [CrossRef]
- Mal, S.; Berendt, A.R.; Peacock, S.J. Staphylococcus aureus bone and joint infection. J. Infect. 2002, 44, 143–151. [Google Scholar] [CrossRef]
- Fux, C.A.; Costerton, J.W.; Stewart, P.S.; Stoodley, P. Survival strategies of infectious biofilms. Trends Microbiol. 2005, 13, 34–40. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Costerton, J.W.; Lewandowski, Z.; Caldwell, D.E.; Korber, D.R.; Lappin-Scott, H.M. Microbial biofilms. Ann. Rev. Microbiol. 1995, 49, 711–745. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881. [Google Scholar] [CrossRef] [PubMed]
- Mandell, J.B.; Orr, S.; Koch, J.; Nourie, B.; Ma, D.; Bonar, D.D.; Shah, N.; Urish, K.L. Large variations in clinical antibiotic activity against staphylococcus aureus biofilms of periprosthetic joint infection isolates. J. Orthop. Res. 2019, 37, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Balaban, N.Q.; Gerdes, K.; Lewis, K.; McKinney, J.D. A problem of persistence: Still more questions than answers? Nat. Rev. Microbiol. 2013, 11, 587. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 2008, 322, 107–131. [Google Scholar]
- Lewis, K. Persister cells. Annu. Rev. Microbiol. 2010, 64, 357–372. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M. Antibiotic resistance: The last resort. Nature 2013, 499, 394–396. [Google Scholar] [CrossRef] [Green Version]
- Coates, A.; Hu, Y.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002, 1, 895. [Google Scholar] [CrossRef]
- Thomas, J.G.; Litton, I.; Rinde, H. Economic impact of biofilms on treatment costs. In Biofilms, Infection and Antimicrobial Therapy; Pace, J.L., Ruppe, M.E., Finch, R.G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 21–37. [Google Scholar]
- Durante-Mangoni, E.; Grammatikos, A.; Utili, R.; Falagas, M.E. Do we still need the aminoglycosides? Int. J. Antimicrob. Agents 2009, 33, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Edson, R.S.; Terrell, C.L. (Eds.) The Aminoglycosides; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Benveniste, R.; Davies, J. Mechanisms of antibiotic resistance in bacteria. Ann. Rev. Biochem. 1973, 42, 471–506. [Google Scholar] [CrossRef] [PubMed]
- Gilleland, L.B.; Gilleland, H.E.; Gibson, J.A.; Champlin, F.R. Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J. Med. Microbiol. 1989, 29, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, K. Multidrug resistance in Gram-negative bacteria. Curr. Opin. Microbiol. 2001, 4, 500–508. [Google Scholar] [CrossRef]
- Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 479–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, Y.; Tomida, J.; Kawamura, Y. MexXY multidrug efflux system of Pseudomonas aeruginosa. Front. Microbiol. 2012, 3, 408. [Google Scholar] [CrossRef] [Green Version]
- Piddock, L.J.V. Multidrug-resistance efflux pumps? not just for resistance. Nat. Rev. Microbiol. 2006, 4, 629. [Google Scholar] [CrossRef]
- Garzoni, C.; Kelley, W.L. Staphylococcus aureus: New evidence for intracellular persistence. Trends Microbiol. 2009, 17, 59–65. [Google Scholar] [CrossRef]
- Hoffman, L.R.; Déziel, E.; D’Argenio, D.A.; Lépine, F.; Emerson, J.; McNamara, S.; Gibson, R.L.; Ramsey, B.W.; Miller, S.I. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2006, 103, 19890–19895. [Google Scholar] [CrossRef] [Green Version]
- Häußler, S.; Tümmler, B.; Weißbrodt, H.; Rohde, M.; Steinmetz, I. Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin. Infect. Dis. 1999, 29, 621–625. [Google Scholar]
- Høiby, N.; Henneberg, K.; Wang, H.; Stavnsbjerg, C.; Bjarnsholt, T.; Ciofu, O.; Johansen, U.R.; Sams, T. Formation of Pseudomonas aeruginosa inhibition zone during tobramycin disk diffusion is due to transition from planktonic to biofilm mode of growth. Int. J. Antimicrob. Agents 2019, 53, 564–573. [Google Scholar] [PubMed]
- Kühn, K.-D.; Lieb, E.; Berberich, C. PMMA bone cement: What is the role of local antibiotics. Maitrise Orthopaed 2016, 243, 1–15. [Google Scholar]
- Malhotra, A.; Lieb, E.; Berberich, C.; Kühn, K.-D. PMMA Cements in Revision Surgery; Springer: New York, NY, USA, 2017; p. 243. [Google Scholar]
- McPherson, E.; Dipane, M.; Sherif, S. Dissolvable antibiotic beads in treatment of periprosthetic joint infection and revision arthroplasty-the use of synthetic pure calcium sulfate (Stimulan®) impregnated with Vancomycin & Tobramycin. Reconstr. Rev. 2013, 3. [Google Scholar] [CrossRef] [Green Version]
- McPherson, E.; Czarkowski, B.; McKinney, B.; Dipane, M. (Eds.) Commercially Pure Dissolvable Antibiotic Beads: A Clinical Review of 756 Cases of Peri-Prosthetic Joint Infection and Aseptic Revision Arthroplasty; The British Editorial Society of Bone & Joint Surgery: London, UK, 2016. [Google Scholar]
- Dusane, D.H.; Diamond, S.M.; Knecht, C.S.; Farrar, N.R.; Peters, C.W.; Howlin, R.P.; Swearingen, M.C.; Calhoun, J.H.; Plaut, R.D.; Nocera, T.M.; et al. Effects of loading concentration, blood and synovial fluid on antibiotic release and anti-biofilm activity of bone cement beads. J. Control. Release 2017, 248, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.S.; Granger, J.F.; Calhoun, J.H. Depot antibiotics. Tech. Orthop. 2015, 30, 223–229. [Google Scholar] [CrossRef]
- Plaut, R.D.; Mocca, C.P.; Prabhakara, R.; Merkel, T.J.; Stibitz, S. Stably luminescent Staphylococcus aureus clinical strains for use in bioluminescent imaging. PLoS ONE 2013, 8, e59232. [Google Scholar] [CrossRef] [PubMed]
- Dusane, D.H.; Lochab, V.; Jones, T.; Peters, C.W.; Sindeldecker, D.; Das, A.; Roy, S.; Sen, C.K.; Subramaniam, V.V.; Wozniak, D.J.; et al. Electroceutical Treatment of Pseudomonas aeruginosa Biofilms. Sci. Rep. 2019, 9, 2008. [Google Scholar] [CrossRef] [PubMed]
- Tintle, L.T.S.M.; Forsberg, L.J.A.; Potter, M.A.J.B.K.; Islinger, R.B.; Andersen, L.T.C.R.C. Prosthesis retention, serial debridement, and antibiotic bead use for the treatment of infection following total joint arthroplasty. Orthopedics 2009, 32, 2. [Google Scholar]
- Lederberg, J.; Lederberg, E.M. Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 1952, 63, 399. [Google Scholar]
- Matsuo, M.; Hiramatsu, M.; Singh, M.; Sasaki, T.; Hishinuma, T.; Yamamoto, N.; Morimoto, Y.; Kirikae, T.; Hiramatsu, K. Genetic and transcriptomic analyses of ciprofloxacin-tolerant Staphylococcus aureus isolated by the Replica Plating Tolerance Isolation System (REPTIS). Antimicrob. Agents Chemother. 2019, 63, e02019-18. [Google Scholar] [CrossRef] [Green Version]
- Gunnison, J.B.; Fraher, M.A.; Jawetz, E. Persistence of Staphylococcus aureus in penicillin in vitro. Microbiology 1964, 35, 335–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Keren, I.; Kaldalu, N.; Spoering, A.; Wang, Y.; Lewis, K. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 2004, 230, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Molina-Manso, D.; Del Prado, G.; Ortiz-Pérez, A.; Manrubia-Cobo, M.; Gomez-Barrena, E.; Cordero-Ampuero, J.; Esteban, J. In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int. J. Antimicrob. Agents 2013, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Urish, K.L.; DeMuth, P.W.; Kwan, B.W.; Craft, D.W.; Ma, D.; Haider, H.; Tuan, R.S.; Wood, T.K.; Davis, C.M., III. Antibiotic-tolerant Staphylococcus aureus biofilm persists on arthroplasty materials. Clin. Orthop. Relat. Res. 2016, 474, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.E.; Peppers, M.P.; Whiteside, L.A.; LaZear, R.M. Vancomycin concentration in synovial fluid: Direct injection into the knee vs. intravenous infusion. J. Arthroplast. 2014, 29, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, P.; McLaren, A.; Tavaziva, G.; Overstreet, D. Biofilm antimicrobial susceptibility increases with antimicrobial exposure time. Clin. Orthop. Relat. Res. 2016, 474, 1659–1664. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dusane, D.H.; Brooks, J.R.; Sindeldecker, D.; Peters, C.W.; Li, A.; Farrar, N.R.; Diamond, S.M.; Knecht, C.S.; Plaut, R.D.; Delury, C.; et al. Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads. Materials 2019, 12, 4052. https://doi.org/10.3390/ma12244052
Dusane DH, Brooks JR, Sindeldecker D, Peters CW, Li A, Farrar NR, Diamond SM, Knecht CS, Plaut RD, Delury C, et al. Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads. Materials. 2019; 12(24):4052. https://doi.org/10.3390/ma12244052
Chicago/Turabian StyleDusane, Devendra H., Jacob R. Brooks, Devin Sindeldecker, Casey W. Peters, Anthony Li, Nicholas R. Farrar, Scott M. Diamond, Cory S. Knecht, Roger D. Plaut, Craig Delury, and et al. 2019. "Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads" Materials 12, no. 24: 4052. https://doi.org/10.3390/ma12244052
APA StyleDusane, D. H., Brooks, J. R., Sindeldecker, D., Peters, C. W., Li, A., Farrar, N. R., Diamond, S. M., Knecht, C. S., Plaut, R. D., Delury, C., Aiken, S. S., Laycock, P. A., Sullivan, A., Granger, J. F., & Stoodley, P. (2019). Complete Killing of Agar Lawn Biofilms by Systematic Spacing of Antibiotic-Loaded Calcium Sulfate Beads. Materials, 12(24), 4052. https://doi.org/10.3390/ma12244052