Chemical Synthesis of Silk-Mimetic Polymers
Abstract
:1. Introduction
2. Structure–Property Relationships in Silk
2.1. Primary Sequence of Silk Fibroin
2.2. The Supramolecular Nature of Silk
2.3. Silk Fibroin as a Polymer
3. Synthetic Approaches for Silk-Mimetic Segmented Copolymers
3.1. Strategy I: Chain Extension and Step-Growth Polymerization
3.1.1. PEG-Peptide Copolymers
3.1.2. Copolymerization using Isocyanate Groups
3.1.3. Copolymerization of Peptide with Semicrystalline Poly(ε-caprolactone)
3.1.4. Chemoenzymatic Synthesis of Prepolymers
3.2. Strategy II: Controlled Radical Polymerization
3.3. Strategy III: Copolymerization with Naturally Derived Silk Fibroin
4. Challenges and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hardy, J.G.; Römer, L.M.; Scheibel, T.R. Polymeric materials based on silk proteins. Polymer 2008, 49, 4309–4327. [Google Scholar] [CrossRef]
- Fink, T.D.; Zha, R.H. Silk and silk-like supramolecular materials. Macromol. Rapid Commun. 2018, 39, 1700834. [Google Scholar] [CrossRef]
- Gosline, J.M.; Guerette, P.A.; Ortlepp, C.S.; Savage, K.N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 1999, 202, 3295–3303. [Google Scholar]
- Motta, A.; Fambri, L.; Migliaresi, C. Regenerated silk fibroin films: Thermal and dynamic mechanical analysis. Macromol. Chem. Phys. 2002, 203, 1658–1665. [Google Scholar] [CrossRef]
- Winkler, S.; Kaplan, D.L. Molecular biology of spider silk. Rev. Mol. Biotechnol. 2000, 74, 85–93. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Vollrath, F. Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 2005, 4, 901–905. [Google Scholar] [CrossRef]
- Agarwal, N.; Hoagland, D.A.; Farris, R.J. Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films. J. Appl. Polym. Sci. 1997, 63, 401–410. [Google Scholar] [CrossRef]
- Rajkhowa, R.; Levin, B.; Redmond, S.L.; Li, L.H.; Wang, L.; Kanwar, J.R.; Atlas, M.D.; Wang, X. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J. Biomed. Mater. Res. 2011, 97A, 37–45. [Google Scholar] [CrossRef]
- Jin, H.-J.; Park, J.; Karageorgiou, V.; Kim, U.-J.; Valluzzi, R.; Cebe, P.; Kaplan, D.L. Water-stable silk films with reduced β-sheet content. Adv. Funct. Mater. 2005, 15, 1241–1247. [Google Scholar] [CrossRef]
- Leal-Egaña, A.; Scheibel, T. Interactions of cells with silk surfaces. J. Mater. Chem. 2012, 22, 14330–14336. [Google Scholar] [CrossRef]
- Meinel, L.; Hofmann, S.; Karageorgiou, V.; Kirker-Head, C.; McCool, J.; Gronowicz, G.; Zichner, L.; Langer, R.; Vunjak-Novakovic, G.; Kaplan, D.L. The inflammatory responses to silk films in vitro and in vivo. Biomaterials 2005, 26, 147–155. [Google Scholar] [CrossRef]
- Dal Pra, I.; Freddi, G.; Minic, J.; Chiarini, A.; Armato, U. De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials. Biomaterials 2005, 26, 1987–1999. [Google Scholar] [CrossRef]
- Sakabe, H.; Ito, H.; Miyamoto, T.; Noishiki, Y.; Ha, W.S. In vivo blood compatibility of regenerated silk fibroin. Sen-I Gakkaishi 1989, 45, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Zeplin, P.H.; Maksimovikj, N.C.; Jordan, M.C.; Nickel, J.; Lang, G.; Leimer, A.H.; Römer, L.; Scheibel, T. Spider silk coatings as a bioshield to reduce periprosthetic fibrous capsule formation. Adv. Funct. Mater. 2014, 24, 2658–2666. [Google Scholar] [CrossRef]
- Santin, M.; Motta, A.; Freddi, G.; Cannas, M. In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 1999, 46, 382–389. [Google Scholar] [CrossRef]
- Altman, G.H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R.L.; Chen, J.S.; Lu, H.; Richmond, J.; Kaplan, D.L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Vepari, C.; Kaplan, D.L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007. [Google Scholar] [CrossRef]
- Huby, N.; Vié, V.; Renault, A.; Beaufils, S.; Lefèvre, T.; Paquet-Mercier, F.; Pézolet, M.; Bêche, B. Native spider silk as a biological optical fiber. Appl. Phys. Lett. 2013, 102, 123702. [Google Scholar] [CrossRef] [Green Version]
- Kujala, S.; Mannila, A.; Karvonen, L.; Kieu, K.; Sun, Z. Nature silk as a photonics component: A study on its light guiding and nonlinear optical properties. Sci. Rep. 2016, 6, 22358. [Google Scholar] [CrossRef] [Green Version]
- Prajzler, V.; Min, K.; Kim, S.; Nekvindova, P. The investigation of the waveguiding properties of silk fibroin from the visible to near-infrared spectrum. Materials 2018, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Qi, N.; Peng, Y.; Zhang, Y.; Shi, L.; Zhang, X.; Lai, Y.; Wei, K.; Kim, I.S.; Zhang, K.-Q. Sub-micron silk fibroin film with high humidity sensibility through color changing. RSC Adv. 2017, 7, 17889–17897. [Google Scholar] [CrossRef] [Green Version]
- Parker, S.T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J.A.; Kaplan, D.L.; Omenetto, F.G. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415. [Google Scholar] [CrossRef]
- Lawrence, B.D.; Marchant, J.K.; Pindrus, M.A.; Omenetto, F.G.; Kaplan, D.L. Silk film biomaterials for cornea tissue engineering. Biomaterials 2009, 30, 1299–1308. [Google Scholar] [CrossRef] [Green Version]
- Mondia, J.P.; Amsden, J.J.; Lin, D.; Negro, L.D.; Kaplan, D.L.; Omenetto, F.G. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission. Adv. Mater. 2010, 22, 4596–4599. [Google Scholar] [CrossRef]
- Amsden, J.J.; Domachuk, P.; Gopinath, A.; White, R.D.; Negro, L.D.; Kaplan, D.L.; Omenetto, F.G. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 2010, 22, 1746–1749. [Google Scholar] [CrossRef]
- Tsioris, K.; Tilburey, G.E.; Murphy, A.R.; Domachuk, P.; Kaplan, D.L.; Omenetto, F.G. Functionalized-silk-based active optofluidic devices. Adv. Funct. Mater. 2010, 20, 1083–1089. [Google Scholar] [CrossRef]
- Tao, H.; Kaplan, D.L.; Omenetto, F.G. Silk materials—A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837. [Google Scholar] [CrossRef]
- Omenetto, F.G.; Kaplan, D.L. A new route for silk. Nat. Photon. 2008, 2, 641–643. [Google Scholar] [CrossRef]
- Tokareva, O.; Jacobsen, M.; Buehler, M.; Wong, J.; Kaplan, D.L. Structure-function-property-design interplay in biopolymers: Spider silk. Acta Biomater. 2014, 10, 1612–1626. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Shao, Z.; Fritz, V. Animal silks: Their structures, properties and artificial production. Chem. Commun. 2009, 43, 6515–6529. [Google Scholar] [CrossRef]
- Römer, L.; Scheibel, T. The elaborate structure of spider silk. Prion 2008, 2, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Heim, M.; Keerl, D.; Scheibel, T. Spider silk: From soluble protein to extraordinary fiber. Angew. Chem. Int. Ed. 2009, 48, 3584–3596. [Google Scholar] [CrossRef]
- Ebrahimi, D.; Tokareva, O.; Rim, N.G.; Wong, J.Y.; Kaplan, D.L.; Buehler, M.J. Silk–its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 2015, 1, 864–876. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.G.; Scheibel, T.R. Production and processing of spider silk proteins. J. Polym. Sci. A Polym. Chem. 2009, 47, 3957–3963. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.G.; Scheibel, T.R. Silk-inspired polymers and proteins. Biochem. Soc. Trans. 2009, 37, 677–681. [Google Scholar] [CrossRef]
- Kapoor, S.; Kundu, S.C. Silk protein-based hydrogels: Promising advanced materials for biomedical applications. Acta Biomater. 2016, 31, 17–32. [Google Scholar] [CrossRef]
- Xia, X.X.; Qian, Z.G.; Ki, C.S.; Park, Y.H.; Kaplan, D.L.; Lee, S.Y. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. USA 2010, 107, 14059–14063. [Google Scholar] [CrossRef] [Green Version]
- Bowen, C.H.; Dai, B.; Sargent, C.J.; Bai, W.; Ladiwala, P.; Feng, H.; Huang, W.; Kaplan, D.L.; Galazka, J.M.; Zhang, F. Recombinant spidroins fully replicate primary mechanical properties of natural spider silk. Biomacromolecules 2018, 19, 3853–3860. [Google Scholar] [CrossRef] [Green Version]
- Vendrely, C.; Scheibel, T. Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 2007, 7, 401–409. [Google Scholar] [CrossRef]
- Scheibel, T. Protein fibers as performance proteins: New technologies and applications. Curr. Opin. Biotechnol. 2005, 16, 427–433. [Google Scholar] [CrossRef]
- Kluge, J.A.; Rabotyagova, O.; Leisk, G.G.; Kaplan, D.L. Spider silks and their applications. Trends Biotechnol. 2008, 26, 244–251. [Google Scholar] [CrossRef]
- Scheibel, T. Spider silks: Recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 2004, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Teulé, F.; Cooper, A.R.; Furin, W.A.; Bittencourt, D.; Rech, E.L.; Brooks, A.; Lewis, R.V. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 2009, 4, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Ko, F.K.; Jovicic, J. Modeling of mechanical properties and structural design of spider web. Biomacromolecules 2004, 5, 780–785. [Google Scholar] [CrossRef]
- Zhou, C.Z.; Confalonieri, F.; Jacquet, M.; Perasso, R.; Li, Z.G.; Janin, J. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins 2001, 44, 119–122. [Google Scholar] [CrossRef]
- Lombardi, S.J.; Kaplan, D.L. The amino acid composition of major ampullate gland silk (dragline) of nephila clavipes (Araneae, Tetragnathidae). J. Arachnol. 1990, 18, 297–306. [Google Scholar]
- Andersen, S.O. Amino acid composition of spider silks. Comp. Biochem. Physiol. 1970, 35, 705–711. [Google Scholar] [CrossRef]
- Hagn, F.; Eisoldt, L.; Hardy, J.G.; Vendrely, C.; Coles, M.; Scheibel, T.; Kessler, H. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 2010, 465, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Schaal, D.; Eisoldt, L.; Schweimer, K.; Schwarzinger, S.; Scheibel, T. Acidic residues control the dimerization of the N-terminal domain of black widow spiders’ major ampullate spidroin 1. Sci. Rep. 2016, 6, 34442. [Google Scholar] [CrossRef] [Green Version]
- Askarieh, G.; Hedhammar, M.; Nordling, K.; Saenz, A.; Casals, C.; Rising, A.; Johansson, J.; Knight, S.D. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 2010, 465, 236–238. [Google Scholar] [CrossRef]
- Marsh, R.E.; Corey, R.B.; Pauling, L. The crystal structure of silk fibroin. Acta Cryst. 1995, 8, 62. [Google Scholar] [CrossRef]
- Warwicker, J.O. The crystal structure of silk fibroins. Trans. Faraday Soc. 1956, 52, 554–555. [Google Scholar] [CrossRef]
- Savage, K.N.; Gosline, J.M. The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 2008, 211, 1948–1957. [Google Scholar] [CrossRef] [Green Version]
- Brooks, A.E.; Steinkraus, H.B.; Nelson, S.R.; Lewis, R.V. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia. Biomacromolecules 2005, 6, 3095–3099. [Google Scholar] [CrossRef]
- Guerette, P.A.; Ginzinger, D.G.; Weber, B.H.; Gosline, J.M. Silk properties determined by gland-specific expression of a spider fibroin gene family. Science 1996, 272, 112–115. [Google Scholar] [CrossRef]
- Gatesy, J. Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science 2001, 291, 2603–2605. [Google Scholar] [CrossRef]
- Hayashi, C.Y.; Lewis, R.V. Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider. J. Mol. Biol. 1998, 275, 773–784. [Google Scholar] [CrossRef]
- Ohgo, K.; Kawase, T.; Ashida, J.; Asakura, T. Solid-state NMR analysis of a peptide (Gly-Pro-Gly-Gly-Ala)6-Gly derived from a flagelliform silk sequence of Nephila clavipes. Biomacromolecules 2006, 7, 1210–1214. [Google Scholar] [CrossRef]
- Yoshioka, T.; Tsubota, T.; Tashiro, K.; Jouraku, A.; Kameda, T. A study of the extraordinarily strong and tough silk produced by bagworms. Nat. Commun. 2019, 10, 1469. [Google Scholar] [CrossRef]
- Chen, W.Q.; Priewalder, H.; John, J.P.; Lubec, G. Silk cocoon of Bombyx mori: Proteins and posttranslational modifications - heavy phosphorylation and evidence for lysine-mediated cross links. Proteomics 2010, 10, 369–379. [Google Scholar] [CrossRef]
- Termonia, Y. Molecular Modeling of Spider Silk Elasticity. Macromolecules 1994, 27, 7378–7381. [Google Scholar] [CrossRef]
- Vollrath, F.; Porter, D. Silks as ancient models for modern polymers. Polymer 2009, 50, 5623–5632. [Google Scholar] [CrossRef] [Green Version]
- Vollrath, F.; Porter, D. Spider silk as archetypal protein elastomer. Soft Matter 2006, 2, 377–385. [Google Scholar] [CrossRef]
- Porter, D.; Vollrath, F. The role of kinetics of water and amide bonding in protein stability. Soft Matter 2008, 4, 328–336. [Google Scholar] [CrossRef]
- Porter, D.; Vollrath, F.; Shao, Z. Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E 2005, 16, 199–206. [Google Scholar] [CrossRef]
- Andersson, M.; Johansson, J.; Rising, A. Silk spinning in silkworms and spiders. Int. J. Mol. Sci. 2016, 17, 1290. [Google Scholar] [CrossRef] [Green Version]
- Foo, C.W.P.; Bini, E.; Hensman, J.; Knight, D.P.; Lewis, R.V.; Kaplan, D.L. Role of pH and charge on silk protein assembly in insects and spiders. Appl. Phys. A 2006, 82, 223–233. [Google Scholar] [CrossRef]
- Knight, D.P.; Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 2001, 88, 179–182. [Google Scholar] [CrossRef]
- Dicko, C.; Vollrath, F.; Kenney, J.M. Spider silk protein refolding is controlled by changing pH. Biomacromolecules 2004, 5, 704–710. [Google Scholar] [CrossRef]
- Tillinghast, E.K.; Chase, S.F.; Townley, M.A. Water extraction by the major ampullate duct during silk formation in the spider, Argiope aurantia Lucas. J. Insect Physiol. 1984, 30, 591–596. [Google Scholar] [CrossRef]
- Vollrath, F.; Knight, D.P. Liquid crystalline spinning of spider silk. Nature 2001, 410, 541–548. [Google Scholar] [CrossRef]
- Knight, D.P.; Vollrath, F. Liquid crystals and flow elongation in a spider’s silk production line. Proc. R. Soc. B Biol. Sci. 1999, 266, 519–523. [Google Scholar] [CrossRef]
- Kerkam, K.; Viney, C.; Kaplan, D.; Lombardi, S. Liquid crystallinity of natural silk secretions. Nature 1991, 349, 596–598. [Google Scholar] [CrossRef]
- Parent, L.R.; Onofrei, D.; Xu, D.; Stengel, D.; Roehling, J.D.; Addison, J.B.; Forman, C.; Amin, S.A.; Cherry, B.R.; Yarger, J.L.; et al. Hierarchical spidroin micellar nanoparticles as the fundamental precursors of spider silks. Proc. Natl. Acad. Sci. USA 2018, 115, 11507–11512. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.-J.; Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature 2003, 424, 1057–1061. [Google Scholar] [CrossRef]
- Rammensee, S.; Slotta, U.; Scheibel, T.; Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 6590–6595. [Google Scholar] [CrossRef] [Green Version]
- Humenik, M.; Smith, A.M.; Arndt, S.; Scheibel, T. Ion and seed dependent fibril assembly of a spidroin core domain. J. Struct. Biol. 2015, 191, 130–138. [Google Scholar] [CrossRef]
- Schacht, K.; Scheibel, T. Controlled hydrogel formation of a recombinant spider silk protein. Biomacromolecules 2011, 12, 2488–2495. [Google Scholar] [CrossRef]
- Viney, C. Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramol. Sci. 1997, 4, 75–81. [Google Scholar] [CrossRef]
- Oroudjev, E.; Soares, J.; Arcdiacono, S.; Thompson, J.B.; Fossey, S.A.; Hansma, H.G. Segmented nanofibers of spider dragline silk: Atomic force microscopy and single-molecule force spectroscopy. Proc. Natl. Acad. Sci. USA 2002, 99, 6460–6465. [Google Scholar] [CrossRef] [Green Version]
- Humenik, M.; Magdeburg, M.; Scheibel, T. Influence of repeat numbers on self-assembly rates of repetitive recombinant spider silk proteins. J. Struct. Biol. 2014, 186, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, D.J.; Dennis, J.M.; Long, T.E. Amide-containing segmented copolymers. Prog. Polym. Sci. 2015, 45, 1–22. [Google Scholar] [CrossRef]
- Huemmerich, D.; Helsen, C.W.; Quedzuweit, S.; Oschmann, J.; Rudolph, R.; Scheibel, T. Primary Structure Elements of Spider Dragline Silks and Their Contribution to Protein Solubility. Biochemistry 2004, 43, 13604–13612. [Google Scholar] [CrossRef] [PubMed]
- Fahnestock, S.R.; Irwin, S.L. Synthetic spider dragline silk proteins and their production in Escherichia coli. Appl. Microbiol. Biotechnol. 1997, 47, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Kim, T.Y.; Lee, S.Y. Recent advances in production of recombinant spider silk proteins. Curr. Opin. Biotechnol. 2012, 23, 957–964. [Google Scholar] [CrossRef]
- Tokareva, O.; Michalczechen-Lacerda, V.A.; Rech, E.L.; Kaplan, D.L. Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 2013, 6, 651–663. [Google Scholar] [CrossRef]
- Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Paramonov, S.E.; Aulisa, L.; Bakota, E.L.; Hartgerink, J.D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 2007, 129, 12468–12472. [Google Scholar] [CrossRef]
- Collier, J.H.; Messersmith, P.B. Self-assembling polymer—Peptide conjugates: Nanostructural tailoring. Adv. Mater. 2004, 16, 907–910. [Google Scholar] [CrossRef]
- Smeenk, J.M.; Schon, P.; Otten, M.B.J.; Speller, S.; Stunnenberg, H.G.; van Hest, J.C.M. Fibril formation by triblock copolymers of silklike β-sheet polypeptides and poly(ethylene glycol). Macromolecules 2006, 39, 2989–2997. [Google Scholar] [CrossRef]
- Elacqua, E.; Manning, K.B.; Lye, D.S.; Pomarico, S.K.; Morgia, F.; Weck, M. Supramolecular multiblock copolymers featuring complex secondary structures. J. Am. Chem. Soc. 2017, 139, 12240–12250. [Google Scholar] [CrossRef] [PubMed]
- Hendrich, M.; Lewerdomski, L.; Vana, P. Biomimetic triblock and multiblock copolymers containing L-Phenylalanine moieties showing healing and enhanced mechanical properties. J. Polym. Sci. A Polym. Chem. 2015, 53, 2809–2819. [Google Scholar] [CrossRef]
- Koga, T.; Kamiwatari, S.; Higashi, N. Preparation and self-assembly behavior of β-sheet peptide-inserted amphiphilic block copolymer as a useful polymeric surfactant. Langmuir 2013, 29, 15477–15484. [Google Scholar] [CrossRef] [PubMed]
- Murata, H.; Sanda, F.; Endo, T. Synthesis and radical polymerization behavior of methacrylamides having L-leucyl-L-alanine oligopeptide moieties. Effect of the peptide chain length on the radical polymerizability. Macromol. Chem. Phys. 2001, 202, 759–764. [Google Scholar] [CrossRef]
- Rathore, O.; Winningham, M.J.; Sogah, D.Y. A novel silk-based segmented block copolymer containing GlyAlaGlyAla β-sheets templated by phenoxathiin. J. Polym. Sci. A Polym. Chem. 2000, 38, 352–366. [Google Scholar] [CrossRef]
- Rathore, O.; Sogah, D.Y. Self-assembly of β-sheets into nanostructures by poly (alanine) segments incorporated in multiblock copolymers inspired by spider silk. J. Am. Chem. Soc. 2001, 123, 5231–5239. [Google Scholar] [CrossRef]
- Rathore, O.; Sogah, D.Y. Nanostructure formation through β-sheet self-assembly in silk-based materials. Macromolecules 2001, 34, 1477–1486. [Google Scholar] [CrossRef]
- Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly (ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. [Google Scholar] [CrossRef]
- Shioiri, T.; Ninomiya, K.; Yamada, S. Diphenylphosphoryl azide. New convenient reagent for a modified Curtius reaction and for peptide synthesis. J. Am. Chem. Soc. 1972, 94, 6203–6205. [Google Scholar] [CrossRef]
- Winningham, M.J.; Sogah, D.Y. A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: Polymers containing parallel β-sheets templated by a phenoxathiin-based reverse turn mimic. Macromolecules 1997, 30, 862–876. [Google Scholar] [CrossRef]
- Zhou, C.; Leng, B.; Yao, J.; Qian, J.; Chen, X.; Zhou, P.; Knight, D.P.; Shao, Z. synthesis and characterization of multiblock copolymers based on spider dragline silk proteins. Biomacromolecules 2006, 7, 2415–2419. [Google Scholar] [CrossRef]
- Yao, J.; Xiao, D.; Chen, X.; Zhou, P.; Yu, T.; Shao, Z. Synthesis and solid-state secondary structure investigation of silk-proteinlike multiblock polymers. Macromolecules 2003, 36, 7508–7512. [Google Scholar] [CrossRef]
- Seefried, C.G.; Koleske, J.V.; Critchfield, F.E. Thermoplastic urethane elastomers. I. Effects of soft-segment variations. J. Appl. Polym. Sci. 1975, 19, 2493–2502. [Google Scholar] [CrossRef]
- Skarja, G.A.; Woodhouse, K.A. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J. Appl. Polym. Sci. 2000, 75, 1522–1534. [Google Scholar] [CrossRef]
- Li, Y.; Ren, Z.; Zhao, M.; Yang, H.; Chu, B. Multiphase structure of segmented polyurethanes: Effects of hard-segment flexibility. Macromolecules 1993, 26, 612–622. [Google Scholar] [CrossRef]
- Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 2006, 47, 3073–3082. [Google Scholar] [CrossRef]
- Liu, H.; Xu, W.; Zhao, S.; Huang, J.; Yang, H.; Wang, Y.; Ouyang, C. Silk-inspired polyurethane containing GlyAlaGlyAla tetrapeptide. I. Synthesis and primary structure. J. Appl. Polym. Sci. 2010, 117, 235–242. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Liu, X.; Zuo, D.; Gu, S.; Xu, W. Silk-inspired polyurethane containing GlyAlaGlyAla tetrapeptide. II. physical properties and structure. J. Appl. Polym. Sci. 2013, 130, 631–637. [Google Scholar] [CrossRef]
- Liu, H.; Xu, W.; Liu, X.; Xu, J.; Li, W.; Liu, X. Effects of superfine silk protein powders on mechanical properties of wet-spun polyurethane fibers. J. Appl. Polym. Sci. 2009, 114, 3428–3433. [Google Scholar] [CrossRef]
- Gu, L.; Jiang, Y.; Hu, J. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 2019, 1904311. [Google Scholar] [CrossRef]
- Bell, F.I.; McEwen, I.J.; Viney, C. Supercontraction stress in wet spider dragline. Nature 2002, 416, 37. [Google Scholar] [CrossRef]
- Huang, H.; Hu, J.; Zhu, Y. Shape-memory biopolymers based on β-sheet structures of polyalanine segments inspired by spider silks. Macromol. Biosci. 2013, 13, 161–166. [Google Scholar] [CrossRef]
- Palomo, J.M. Solid-phase peptide synthesis: An overview focused on the preparation of biologically relevant peptides. RSC Adv. 2014, 4, 32658–32672. [Google Scholar] [CrossRef] [Green Version]
- Hadjichristidis, N.; Iatrou, H.; Pitsikalis, M.; Sakellariou, G. Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of α-amino acid n-carboxyanhydrides. Chem. Rev. 2009, 109, 5528–5578. [Google Scholar] [CrossRef]
- Gudeangadi, P.G.; Tsuchiya, K.; Sakai, T.; Numata, K. Chemoenzymatic synthesis of polypeptides consisting of periodic di- and tri-peptide motifs similar to elastin. Polym. Chem. 2018, 9, 2336–2344. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, K.; Numata, K. Chemoenzymatic synthesis of polypeptides for use as functional and structural materials. Macromol. Biosci. 2017, 17, 1700177. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, K.; Numata, K. Chemical synthesis of multiblock copolypeptides inspired by spider dragline silk proteins. ACS Macro Lett. 2017, 6, 103–106. [Google Scholar] [CrossRef]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661–3688. [Google Scholar] [CrossRef]
- Smeenk, J.M.; Otten, M.B.J.; Thies, J.; Tirrell, D.A.; Stunnenberg, H.G.; van Hest, J.C.M. Controlled assembly of macromolecular β-sheet fibrils. Angew. Chem. Int. Ed. 2005, 44, 1968–1971. [Google Scholar] [CrossRef] [PubMed]
- Ayres, L.; Adams, P.H.H.M.; Löwik, D.W.P.M.; van Hest, J.C.M. β-sheet side chain polymers synthesized by atom-transfer radical polymerization. Biomacromolecules 2005, 6, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Motokucho, S.; Sudo, A.; Sanda, F.; Endo, T. Controlled monomer insertion into polymer main chain: Synthesis of sequence ordered polystyrene containing thiourethane and trithiocarbonate units by the RAFT process. Chem. Commun. 2002, 1946–1947. [Google Scholar] [CrossRef]
- Motokucho, S.; Sudo, A.; Endo, T. Polymer having a trithiocarbonate moiety in the main chain: Application to reversible addition–fragmentation chain transfer controlled thermal and photoinduced monomer insertion polymerizations. J. Polym. Sci. A Polym. Chem. 2006, 44, 6324–6331. [Google Scholar] [CrossRef]
- Ebeling, B.; Eggers, M.; Vana, P. Ideal molecular weight distributions of multiblock copolymers prepared via raft polymerization. Macromolecules 2010, 43, 10283–10290. [Google Scholar] [CrossRef]
- Sun, Y.; Shao, Z.; Zhou, J.; Yu, T. Compatibilization of acrylic polymer–silk fibroin blend fibers. I. Graft copolymerzation of acrylonitrile onto silk fibroin. J. Appl. Polym. Sci. 1998, 69, 1089–1097. [Google Scholar] [CrossRef]
- Chen, Z.; Suzuki, M.; Kimura, M.; Kondo, Y.; Hanabusa, K.; Shirai, H. Synthesis and characterization of spinning poly (acrylonitrile-co-silk fibroin peptide) s. J. Appl. Polym. Sci. 2004, 92, 1540–1547. [Google Scholar] [CrossRef]
- Chen, Z.; Kimura, M.; Suzuki, M.; Kondo, Y.; Hanabusa, K.; Shirai, H. Synthesis and characterization of new acrylic polymer containing silk protein. Sen’i Gakkaishi 2003, 59, 168–172. [Google Scholar] [CrossRef] [Green Version]
- van Genabeek, B.; Lamers, B.A.G.; de Waal, B.F.M.; van Son, M.H.C.; Palmans, A.R.A.; Meijer, E.W. Amplifying (im) perfection: The impact of crystallinity in discrete and disperse block co-oligomers. J. Am. Chem. Soc. 2017, 139, 14869–14872. [Google Scholar] [CrossRef]
- van Genabeek, B.; de Waal, B.F.M.; Ligt, B.; Palmans, A.R.A.; Meijer, E.W. Dispersity under scrutiny: Phase behavior differences between disperse and discrete low molecular weight block co-oligomers. ACS Macro Lett. 2017, 6, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Petkau-Milroy, K.; Klerks, G.; van Genabeek, B.; Lafleur, R.P.M.; Palmans, A.R.A.; Meijer, E.W. Consequences of dispersity on the self-assembly of aba-type amphiphilic block co-oligomers. ACS Macro Lett. 2018, 7, 546–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biemond, G.J.E.; Feijen, J.; Gaymans, R.J. Influence of polydispersity of crystallizable segments on the properties of segmented block copolymers. Polym. Eng. Sci. 2008, 48, 1389–1400. [Google Scholar] [CrossRef]
- Biemond, G.J.E.; Gaymans, R.J. Elastic properties of thermoplastic elastomers based on poly (tetramethylene oxide) and monodisperse amide segments. J. Mater. Sci. 2010, 45, 158–167. [Google Scholar] [CrossRef]
- Sauer, B.B.; Mclean, R.S.; Gaymans, R.J.; Niesten, M.C.J.E. Crystalline morphologies in segmented copolymers with hard segments of uniform length. J. Polym. Sci. B Polym. Phys. 2004, 42, 1783–1792. [Google Scholar] [CrossRef]
- Harrell, L.L. Segmented Polyurethans. Properties as a function of segment size and distribution. Macromolecules 1969, 2, 607–612. [Google Scholar] [CrossRef]
- Ng, H.N.; Allegrezza, A.E.; Seymour, R.W.; Cooper, S.L. Effect of segment size and polydispersity on the properties of urethane block polymers. Polymer 1973, 14, 255–261. [Google Scholar] [CrossRef]
Material | Density (g/cm3) | Elongation at Break (%) | Strength (GPa) | Young’s Modulus (GPa) | Toughness (MJ/m3) |
---|---|---|---|---|---|
Dragline Silk, A. diadematus | 1.3 | 27 | 1.1 | 10 | 180 |
Flag Silk, A. diadematus | 1.3 | 270 | 0.5 | 0.003 | 150 |
Cocoon Silk, B. mori | 1.3 | 18 | 0.6 | 7 | 70 |
Steel | 7.8 | 0.8 | 1.5 | 200 | 6 |
Elastin | 1.3 | 15 | 0.002 | 0.001 | 2 |
Carbon Fiber | 1.8 | 1.3 | 4 | 300 | 25 |
Kevlar 49 | 1.4 | 2.7 | 3.6 | 130 | 50 |
Nylon 6,6 | 1.1 | 18 | 0.95 | 5 | 80 |
Wool (at 100% relative humidity) | 1.3 | 50 | 0.2 | 0.5 | 60 |
Silk Fibroin | Rigid Segment Motifs (β-Sheet Forming) | Flexible Segment Motifs |
---|---|---|
A. diadematus, dragline MaSp1 [54,55,56] | (A)n | GGX |
A. diadematus, dragline MaSp2 [54,55,56] | (A)n | GPGXX, GGX |
B. mori, cocoon [45] | (GA)n | GY, GV |
A. diadematus, flagelliform [57,58] | n/a * | GPGXX, GGX |
E. variegata, cocoon [59] | (A)9E(A)12, (GA)n | GGY, GSG |
Polymer | THF | NMP | DMF | DMSO | DMAC | CHCl3 | DCA | TFA | HFIP | TFE | PGMEA |
---|---|---|---|---|---|---|---|---|---|---|---|
GAGA-PEG [97] | + | + | + | + | |||||||
ALA-PEG [96] | + | + | |||||||||
(A)5-PI [101] | + a | ||||||||||
GAGA-pTHF [107,108] | + | + | + | ||||||||
PBLG-PTMEG [110] | + | + | |||||||||
ALA-PCL [112] | + | + | |||||||||
(A)x-(G-r-L)y [117] | + | + | |||||||||
poly(APA-b-MA) [92] | + | + | |||||||||
AN-co-silk fibroin [128] | + b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, A.; Connor, A.J.; Koffas, M.; Zha, R.H. Chemical Synthesis of Silk-Mimetic Polymers. Materials 2019, 12, 4086. https://doi.org/10.3390/ma12244086
Sarkar A, Connor AJ, Koffas M, Zha RH. Chemical Synthesis of Silk-Mimetic Polymers. Materials. 2019; 12(24):4086. https://doi.org/10.3390/ma12244086
Chicago/Turabian StyleSarkar, Amrita, Alexander J. Connor, Mattheos Koffas, and R. Helen Zha. 2019. "Chemical Synthesis of Silk-Mimetic Polymers" Materials 12, no. 24: 4086. https://doi.org/10.3390/ma12244086
APA StyleSarkar, A., Connor, A. J., Koffas, M., & Zha, R. H. (2019). Chemical Synthesis of Silk-Mimetic Polymers. Materials, 12(24), 4086. https://doi.org/10.3390/ma12244086