Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy and Study Selection
2.2. Data Collection
2.3. Risk of Bias
3. Results
3.1. In Vitro Cytotoxicity
3.1.1. Cytotoxicity of Root Canal Sealers
Year | Study | Groups | Sealer–Cell Contact | Extraction Time | Extract Concentration | Cell Exposure Time | Cytotoxic Potential |
---|---|---|---|---|---|---|---|
2019 | Lee et al. [76] | AH PlusTM, Mineral Trioxide Aggregate (MTA) Fillapex®, Endosequence BioCeramic (BC) TM, Medium (control) | Indirect (extract) | 7 d | 1, 1:5, 1:10, 1:50, 1:100 | 1 d | Endosequence BCTM < MTA Fillapex® < AH PlusTM |
Jeanneau et al. [62] | BioRootTM Root Canal Sealer (RCS), Kerr’s Pulp Canal Sealer (PCS), Medium (control) | Indirect (extract) | 1 d | 0.2 mg/mL | 3 d, 6 d, 9 d | BioRootTM RCS (nontoxic) < PCS | |
Giacomino et al. [74] | Roth´s Sealer, AH PlusTM, Endosequence BCTM, ProRoot® Endodontic Sealer (ES), No cells (control), Medium (control) | Indirect (extract) | 3 d | Several dilutions | 7 d | Endosequence BCTM < ProRoot® ES < Roth’s, AH PlusTM | |
Jung et al. [66] | MTA Fillapex®, BioRootTM RCS, AH PlusTM, PCS, Medium (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:10 | 1 d, 7 d, 14 d, 21 d | BioRootTM RCS < AH PlusTM (toxic only in fresh) < MTA Fillapex®, PCS (toxic as fresh or set) | |
2018 | Vouzara et al. [73] | SimpliSeal®, MTA Fillapex®, BioRootTM RCS, Medium (control) | Indirect (extract) | 1 d, 1 w | 1:1, 1:2 | 1 d, 3 d | BioRootTM RCS < MTA Fillapex®, SimpliSeal® |
Alsubait et al. [49] | AH Plus Jet®, Endosequence BCTM, BioRoot RCSTM, Medium (control) | Indirect (extract) | 1 d | 1:2, 1:8, 1:32 | 1 d, 3 d, 7 d | Endosequence BCTM, BioRootTM RCS < AH Plus Jet® | |
Jung et al. [61] | AH PlusTM, PCS, MTA Fillapex®, BioRootTM RCS, Medium (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:10 | 1 d, 7 d, 14 d, 21 d | BioRootTM RCS < AH PlusTM (toxic only in fresh) < MTA Fillapex®, PCS (toxic as fresh or set) | |
Szczurko et al. [39] | AH Plus Jet®, Apexit® Plus, MTA Fillapex®, GuttaFlow®, MetaSEALTM Soft, Tubli-SealTM, Untreated (control) | Indirect (sealer on insert) | - | - | 1 d | Fresh: GuttaFlow® < Apexit® Plus, MTA Fillapex® < AH Plus Jet®, Tubli-SealTM < MetaSEALTM (did not compare fresh vs set conditions) | |
Troiano et al. [38] | AH PlusTM, Sicura Seal, TopSeal®, Medium (control) | Direct and indirect (extract) | Several time points | n/s | 1 d, 2 d, 3 d, 7 d (direct) and 1 d (indirect) | All cytotoxic (no major differences among sealers). Direct cytotoxicity decreased over time. | |
2017 | Arun et al. [22] | Tubli-SealTM, AH PlusTM, SealapexTM, EndoREZ®, Medium (control) (groups with pachymic acid) | Direct | - | - | 1 d | SealapexTM < AH PlusTM < Tubli-SealTM < EndoREZ® |
Collado-González et al. [63] | BioRootTM RCS, Endoseal®, Nano-ceramic Sealer (NCS), Medium (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:4 | 1 d, 2 d, 3 d | BioRootTM RCS (biocompatible) < NCS < Endoseal® | |
Collado-González et al. [64] | GuttaFlow® Bioseal, GuttaFlow®2, MTA Fillapex®, AH PlusTM, Medium (control) | Indirect (extract) | 1 d | Undiluted, 1:2, 1:4 | 1 d, 2 d, 3 d, 7 d | GuttaFlow® Bioseal (nontoxic) < GuttaFlow®2, AH PlusTM, MTA Fillapex® | |
Cintra et al. [21] | MTA High plasticity, MTA Angelus®, Medium (control) | Indirect (extract) | 3 d | 1:50 | 6 h, 1 d, 2 d, 3 d | MTA High Plasticity (nontoxic) < MTA Angelus® | |
Zhu et al. [72] | iRoot® Sealing Paste (SP), MTA, Medium (control) | Indirect (extract) | 1 d | Undiluted | 1 d, 2 d | iRoot® SP, MTA (nontoxic) | |
Cintra et al. [20] | Sealer Plus, AH PlusTM, Endofill, SimpliSeal®, Medium (control) | Indirect (extract) | 3 d | Undiluted, 1:2, 1:4 | 6 h, 1 d, 2 d, 3 d | Sealer Plus < SimpliSeal® < AH PlusTM, Endofill | |
Lv et al. [70] | iRoot® Fast Setting (FS), iRoot® Bioceramic Putty (BP) Plus, ProRoot® MTA, Medium (control) | Indirect (extract) | 3 d | Undiluted, 1:2, 1:4 | 1 d, 2 d, 3 d | iRoot® FS, iRoot® BP Plus, ProRoot® MTA (nontoxic) | |
Victoria-Escandell et al. [57] | MTA Angelus®, MTA Fillapex®, AH PlusTM, Medium (control) | Indirect (extract) | 1 d, 2 d, 7 d, 15 d, 30 d | 1:2 | 1 d | MTA Angelus® (less toxicity) < AH PlusTM < MTA Fillapex® | |
2016 | Suciu et al. [23] | MTA Fillapex®, AH PlusTM, Acroseal, Plastic surface (control) | Direct | - | - | 2 d, 5 d, 9 d, 14 d | hOCs (human osteoblastic cells): Acroseal, MTA Fillapex® < AH PlusTM. DF-MSCs (dental follicle-derived adult mesenchymal stem cells): Acroseal < AH PlusTM < MTA Fillapex® |
2015 | Camps et al. [45] | BioRootTM RCS, PCS, Medium (control) | Indirect (extract from root model) | 1 d | Undiluted | 2 d, 5 d, 7 d | BioRootTM RCS < PCS |
Dimitrova-Nakov et al. [24] | BioRootTM RCS, PCS, Untreated cells (controls) | Direct | - | - | 7 d, 10 d | BioRootTM RCS (nontoxic) < PCS | |
Konjhodzic-Prcic et al. [50] | GuttaFlow®, AH PlusTM, Apexit®, EndoREZ®, Control (n/s) | Indirect (extract) | 1 d | Undiluted | 1 d | All slightly cytotoxic | |
Konjhodzic-Prcic et al. [82] | GuttaFlow®, AH PlusTM, Apexit®, EndoREZ®, Control (n/s) | Indirect (extract) | 1 d | Undiluted | 1 d | Apexit®, GuttaFlow®, AH PlusTM < EndoREZ® | |
Zhou et al. [51] | Endosequence BCTM, MTA Fillapex®, Medium (control) | Indirect (extract) | Fresh: 1 d. Set: 1 d, 1 w, 2 w, 3 w, 4 w | 1:2, 1:8, 1:32, 1:128 | 3 d | Endosequence BCTM (nontoxic). Fresh: MTA Fillapex® < AH PlusTM. Set: AH PlusTM < MTA Fillapex® | |
Silva et al. [77] | GuttaFlow®2, AH PlusTM, Medium (control) | Indirect (extract) | 1 d to 3 d | Undiluted | 1 d | GuttaFlow®2 (nontoxic) < AH PlusTM | |
Parirokh et al. [56] | Duraflur®, AH PlusTM, AH 26®, Medium (control) | Indirect (extract) | 1 d | 1/2, 1/4, 1/8 | 1 d | AH PlusTM < Duraflur® < AH 26® (concentration-dependent) | |
2014 | Jiang et al. [67] | iRoot® BP Plus, iRoot® FS, ProRoot® MTA, SuperEBATM, Medium (control) | Indirect (extract) | 1 d, 3 d, 7 d, 14 d | 100%, 50%, 25% | 1 d | iRoot® BP Plus, iRoot® FS, ProRoot® MTA < SuperEBATM |
Cotti et al. [25] | RealSeal XT, AH Plus Jet®, Untreated (control) | Direct | - | - | 1 h, 1 d, 2 d, 3 d | RealSeal XT < AH Plus Jet® | |
Chang et al. [26] | SealapexTM, Apatite Root Sealer, MTA Fillapex®, iRoot® SP, Medium with and without osteogenic supplementation (O.S.) (control) | Direct | - | - | 3 d, 7 d, 14 d | MTA Fillapex® (nontoxic) < SealapexTM, Apatite Root Sealer, iRoot® SP | |
Mandal et al. [52] | GuttaFlow®2, ProRoot® MTA, AH PlusTM, RealSealTM, Medium (control) | Indirect (extract) | 1 d, 3 d | 0.5, 1, 1.5 cm2/mL | 1 d | GuttaFlow®2 (nontoxic as fresh), ProRoot® MTA < AH PlusTM, RealSealTM | |
Camargo et al. [83] | AH PlusTM, EndoREZ®, RoekoSeal, Medium (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:4, 1:8, 1:16, 1:32 | 1 d | RoekoSeal < AH PlusTM < EndoREZ® | |
2013 | Güven et al. [40] | MTA Fillapex®, iRoot® SP, AH Plus Jet®, Control (n/s) | Indirect (sealer on insert) | - | - | 1d, 3d, 7d, 14d | iRoot® SP < AH PlusTM < MTA Fillapex® |
Kim et al. [84] | AH PlusTM (in the presence or absence of pachymic acid and NAC) | Indirect (extract) | 1 d | 30% | 1d | AH PlusTM was cytotoxic | |
2012 | De-Deus et al. [46] | iRoot® BP Plus, ProRoot® MTA, Medium (negative control), zinc oxide-eugenol (ZOE) cement (positive control) | Indirect (extract from root model) | 1 d, 2 d | Undiluted | 1d | ProRoot® MTA (nontoxic) < iRoot BP Plus < ZOE |
Bin et al. [71] | MTA Angelus®, MTA Fillapex®, AH PlusTM, Untreated (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:4, 1:8, 1:16, 1:32 | 1d | MTA Angelus® (nontoxic) < AH PlusTM < MTA Fillapex® | |
Scelza et al. [53] | RealSeal Self-Etch (SE) TM, AH PlusTM, GuttaFlow®, SealapexTM, Roth 801, ThermaSeal® Plus, Medium (control) | Indirect (extract) | 1 d, 7 d, 14 d, 21 d, 28 d | Undiluted | 1d | GuttaFlow® < AH PlusTM < ThermaSeal® Plus < Roth 801 < RealSealTM < SealapexTM | |
Salles et al. [41] | MTA Fillapex®, Epiphany® SE, Endofill, Untreated (control) | Indirect (sealer on insert) | - | - | 1d, 2d, 3d, 7d | MTA Fillapex® (toxic only for 3d) < Epiphany® SE, Endofill | |
Landuyt et al. [54] | AH Plus Jet®, EndoREZ®, RealSealTM, Calcicur (control), Medium (negative control), 1% Triton X-100 (positive control) | Indirect (extract) | 1 d | 1:1, 1:3, 1:10, 1:30, 1:100, 1:300 | 1d | EndoREZ® < RealSealTM < AH Plus Jet® | |
Shon et al. [42] | CAPSEAL I and II, Apatite Root Sealer type I and III, PCS Extended Working Time (EWT), Medium (control) | Indirect (sealer on insert) | - | - | 18h, 1d, 3d, 7d, 14d | CAPSEAL < Apatite Root Sealer < PCS EWT (cytotoxicity increased with time for Apatite Root Sealers and PCS EWT) | |
2011 | Mukhtar-Fayyad [85] | BioAggregate®, iRoot® SP, Medium (control) | Indirect (extract) | 5 d | Undiluted, 1:2, 1:10, 1:50, 1:100 | 1d, 3d, 7d | iRoot® SP < BioAggregate® (concentration-dependent) |
Zoufan et al. [75] | GuttaFlow®, Endosequence BCTM, AH Plus Jet®, TubliSeal XpressTM, Untreated (control) | Indirect (extract) | 1 d, 3 d | Eluates (300, 600 and 1000 μL) | 1 d | GuttaFlow®, Endosequence BCTM less toxic. F1: Tubli-Seal XpressTM < AH PlusTM. Set1: AH PlusTM < Tubli-Seal XpressTM | |
Loushine et al. [43] | Endosequence BCTM, AH PlusTM, PCS EWT (positive control), Teflon (negative control) | Indirect (sealer on insert) | - | - | 1 d/week (for 6 weeks) | AH PlusTM < Endosequence BCTM < PCS | |
Brackett et al. [36] | AH Plus Jet®, PCS, ProRoot® MTA, Experimental calcium-silicate sealer, Teflon (control) | Direct | - | - | 3 d | ProRoot® MTA, Experimental sealer < AH Plus Jet® < PCS | |
2010 | Yu et al. [86] | AH 26®, Control (n/s) | Indirect (extract) | 1 d, 3 d, 5 d, 7 d | 30% | 1 d, 2 d | AH PlusTM was cytotoxic (extraction time-dependent) |
Zhang et al. [68] | iRoot® SP, AH PlusTM, Medium (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:4 | 1 d | iRoot® SP (nontoxic) < AH Plus | |
Huang et al. [58] | AH 26®, Canals, N2®, Untreated (control) | Indirect (extract) | 1 d | 1:2, 1:4, 1:8 | 1 d | Canals < N2® < AH 26® (concentration-dependent) | |
Bryan et al. [44] | Experimental sealer (calcium silicate-based), AH PlusTM, PCS, Teflon (negative control) | Indirect (sealer on insert) | - | - | 3 d/week (for 5 weeks) | Experimental sealer < AH PlusTM < PCS (concentration-dependent) | |
2009 | Ames et al. [27] | EndoREZ®, RealSealTM, MetaSEALTM, RealSeal SETM, PCS (positive control), Teflon (negative control) | Direct | - | - | 3 d/week (for 5 weeks) | RealSeal SETM, MetaSEALTM (both ↓ with time) < EndoREZ®, RealSealTM, PCS |
Donadio et al. [87] | Activ Gutta-Percha (GP) TM, RealSealTM, AH 26®, Kerr Sealer, Untreated (control) | Indirect (extract) | 1 d, 3 d | Eluates (200, 400, 800 and 1200 μL) | 1 d | Fresh 1: Kerr < RealSealTM, Activ GPTM < AH 26® Set 1: AH 26®, Kerr < Activ GPTM < RealSealTM | |
Gambarini et al. [88] | Epiphany® SE, Epiphany®, PCS, Untreated (control) | Indirect (extract) | 1 d | Undiluted | 1 d | Epiphany®, Epiphany® SE, PCS | |
Camargo et al. [89] | AH PlusTM, Epiphany®, Acroseal, Castor Oil Polymer sealer, Untreated (control) | Indirect (extract) | 1 d | 1:1, 1:2, 1:4, 1:8, 1:16, 1:32 | 1 d | Castor Oil Polymer << AH PlusTM, Epiphany® < Acroseal | |
Huang et al. [59] | AH 26®, Canals, N2®, Untreated (control) | Indirect (extract) | 1 d | 1:2, 1:4, 1:8 | 2 d | Canals < AH 26®, N2® (concentration-dependent) | |
2008 | Heitman et al. [28] | Epiphany®, Untreated (control) | Direct | - | 25, 50, 100, 200, 400, 800 μg/mL | 1 d, 3 d, 7 d | Epiphany® was cytotoxic (concentration- and exposure time-dependent) |
Valois and Azevedo [78] | AH PlusTM, Endofill, Sealer 26, Medium from empty molds (control) | Indirect (extract) | 1 d | 20%, 10%, 5% | 1 d | All cytotoxic (concentration-dependent) | |
Pinna et al. [29] | MetaSEALTM, AH Plus Jet®, PCS, polymethyl methacrylate (PMMA, positive control), Teflon (negative control) | Direct | - | - | 3 d/week (for 5 weeks) | AH Plus Jet®, PMMA < MetaSEALTM < PCS (time-dependent, except for PCS) | |
Huang et al. [60] | AH 26®, Canals, N2®, Untreated (control) | Indirect (extract) | 1 d | 1:2, 1:4, 1:8 | 2 d | Canals < AH 26® < N2® (concentration-dependent) | |
Lodienė et al. [30] | AH PlusTM, EndoREZ®, RoekoSeal Automix, Epiphany®, Medium (control) | Direct and indirect (extract) | 1 d (set) | Undiluted | 2 h | EndoREZ® < AH PlusTM, RoekoSeal < Epiphany® | |
2007 | Lee et al. [80] | N2®, SealapexTM, AH 26®, Control (n/s) | Indirect (extract) | 1 d | Dilution factor: 10–80 | 1 d | SealapexTM < AH 26® < N2® (concentration-dependent) |
Lee et al. [79] | AH 26®, urethane dimethacrylate (UDMA), Control (n/s) | Indirect (extract) | 1 d | 5 mg/mL and dilutions | 1 d | Cytotoxicity was concentration-dependent (prevented by NAC) | |
Lee et al. [81] | N2®, SealapexTM, AH 26®, Control (n/s) | Indirect (extract) | 1 d | Dilution factors: 6–18, 1–7, 5–100 | 1 d | SealapexTM < N2® < AH 26® (concentration-dependent) | |
Merdad et al. [37] | Epiphany®, AH PlusTM, Filters with cells and no sealer, and filters with no cells and with sealer (controls) | Direct and indirect (specimens) | - | - | 2 h | Epiphany® < AH PlusTM | |
2006 | Key et al. [31] | Epiphany®, Resilon, GP, Grossman, Thermaseal®, SealapexTM. Isotonic saline and 10% formaldehyde (controls) | Direct | - | - | 1 h, 1 d | F1: SealapexTM < others. S1: Thermaseal®, Epiphany® < others. |
Bouillaguet et al. [32] | AH PlusTM, Epiphany®, GuttaFlow®, Teflon (control) | Direct | - | - | 1 d, 3 d | GuttaFlow® < AH PlusTM < Epiphany® (exposure time-dependent) | |
2005 | Miletic et al. [33] | Roekoseal Automix, AH PlusTM, Control (n/s) | Direct | - | - | 5 d | RoekoSeal < AH PlusTM (setting time-dependent for AH PlusTM) |
2004 | Al-Awadhi et al. [90] | SealapexTM, PCS, Roekoseal Automix, Medium (control) | Indirect (extract) | 1 d | 190 mm2/1 mL, 50 or 300 μL (b, ED50) | (a) 1 d (b) 1 d, 3 d | (a) RoekoSeal, SealapexTM < PCS (b) RoekoSeal < PCS, SealapexTM |
Bouillaguet et al. [34] | PCS, RoekoSeal, TopSeal®, EndoREZ®, Teflon (control) | Direct | - | - | 1 d 1 d, 7 d | RoekoSeal < PCS, TopSeal®, EndoREZ® (both fresh and set) | |
2003 | Camps and About [47] | AH PlusTM, CortisomolTM, SealapexTM, Medium (control) | Indirect (normal extracts and from root model) | 1 d, 2 d, 30 d | Undiluted | 1 d | (a) AH PlusTM < CortisomolTM < SealapexTM (b) SealapexTM < AH PlusTM < CortisomolTM |
Mendes et al. [35] | PCS, Endofill, Medium (control) | Direct | - | - | 2 h, 1 d, 2 d | PCS, Endofill (nontoxic) | |
2002 | Schwarze et al. [48] | AH PlusTM, Apexit®, Endométhasone, KetacTM Endo, N2®, RoekoSeal, Gutta-percha, Medium (control) | Indirect (extract) | 24 h, 1–52 w | Undiluted | 1 d | Pronounced cytotoxicity only by N2® |
Huang et al. [91] | AH 26®, AH PlusTM, Medium and dimethyl sulfoxide (DMSO) as controls | Indirect (extract) | 1 d | 0.10, 0.08, 0.04, 0.02, 0.01 mg/mL | 1 d | Both cytotoxic (concentration-dependent) | |
Schwarze et al. [65] | N2®, Endométhasone, Apexit®, AH PlusTM, KetacTM Endo, Untreated (control) | Indirect (extract) | 1 d | Undiluted | 1 d | Apexit® < AH PlusTM < KetacTM Endo < Endométhasone < N2® | |
2000 | Azar et al. [55] | AH 26®, AH PlusTM, ZOE, Distilled water (positive control) | Indirect (extract) | 1 h, 4 h, 8 h, 1 d, 2 d, 5 d, 1–5 w | Undiluted | 22 h | AH PlusTM only toxic in early phase (4 h). AH 26® toxic for 1 w and ZOE for 5 w. |
Huang et al. [17] | AH 26®, AH PlusTM, Medium (control) | Direct | - | - | (a) 1 d (b) 4 h, 10 h, 1 d | AH PlusTM < AH 26® | |
Schweikl and Schmalz [69] | AH PlusTM, Control (n/s) | Indirect (extract) | 1 d | Diluted | 1 d | Sealer eluted in DMSO was toxic. Sealer eluted in sodium chloride was nontoxic. |
3.1.2. Influence of Condition and Time of Material Setting on Cytotoxicity
3.1.3. Influence of Sealer Concentration on Cytotoxicity
3.1.4. Influence of Exposure Time to Sealer on Cytotoxicity
3.2. In Vivo Biocompatibility
3.2.1. Inflammatory Tissue Reaction to Sealers
3.2.2. Time of Exposure Influence on Biocompatibility
3.2.3. Influence of Apical Limit of Root Canal Filling on Biocompatibility
3.3. Risk of Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Appendix A
Database | Search Equation |
---|---|
Medline (via PubMed) | ((“Root Canal Filling Materials”[Mesh] OR root canal sealer OR root canal filling OR root canal obturation OR “Epoxy Resins”[Mesh] OR “Zinc Oxide-Eugenol Cement”[Mesh] OR “Glass Ionomer Cements”[Mesh] OR “Calcium Hydroxide”[Mesh] OR “mineral trioxide aggregate”[Supplementary Concept] OR “endocem”[Supplementary Concept] OR bioceramic sealer OR “Dental cements”[Mesh]) AND “Endodontics”[Mesh]) AND (“Toxicity Tests”[Mesh] OR “Materials Testing”[Mesh] OR “Cell Death”[Mesh] OR “Cell Survival”[Mesh] OR cytotoxicity) |
Science Direct | ((“Root Canal Filling Materials” OR “root canal sealer” OR “root canal obturation”) AND “Endodontics”) AND (“Toxicity Tests” OR “Materials Testing” OR “Cell Death” OR “Cell Survival” OR “cytotoxicity”) |
Cochrane Library | (MeSH descriptor: [Root Canal Filling Materials] AND MeSH descriptor: [Endodontics]) AND (MeSH descriptor: [Materials Testing] OR MeSH descriptor: [Cell survival]) |
Web of Science Core Collection | TS=(root canal filling materials* OR root canal sealer* OR root canal obturation) AND TS=(endodontics) AND TS=(toxicity tests* OR materials testing* OR cell death* OR cell survival* OR cytotoxicity) |
ClinicalTrials.gov | “Root Canal Obturation” (Limit: Status – Completed). |
EMBASE | (“root canal filling material”/exp OR “root canal filling material” OR “epoxy resin”/exp OR “epoxy resin” OR “zinc oxide eugenol”/exp OR “zinc oxide eugenol” OR “glass ionomer”/exp OR “glass ionomer” OR “calcium hidroxyde” OR “mineral trioxide aggregate”/exp OR “mineral trioxide aggregate” OR “endocem”/exp OR “endocem” OR “tooth cement”/exp OR “tooth cement” OR “bioceramic sealer” OR “root canal sealer”/exp OR “root canal sealer”) AND (“endodontics”/exp OR “endodontics”) AND (“toxicity testing”/exp OR “toxicity testing” OR “materials testing”/exp OR “materials testing” OR “cell death”/exp OR “cell death” OR “cell survival”/exp OR “cell survival” OR “cytotoxicity”/exp OR “cytotoxicity”) AND ([english]/lim OR [portuguese]/lim OR [spanish]/lim) AND [1-1-2000]/sd NOT [12-6-2019]/sd AND [embase]/lim |
Appendix B
Year | Study | Groups | N | Material Condition (Setting Time) | Method | Cell Model | Assay(s) |
---|---|---|---|---|---|---|---|
2019 | Lee et al. [76] | AH PlusTM, MTA Fillapex®, Endosequence BCTM, Medium (control) | N ≥2 per group (triplicate) | Set (24 h) | Indirect contact testing with extract (sealer disc) | MC3T3-E1 | WST-1 |
Jeanneau et al. [62] | BioRootTM RCS, PCS, Medium (control) | N = 3 per group (triplicate) | Freshly mixed | Indirect contact testing with extract (specimen) | hPDLFs | MTT | |
Giacomino et al. [74] | Roth´s Sealer, AH PlusTM, Endosequence BCTM, ProRoot® ES, No cells (control), Medium (control) | N = 6–12 per group | Freshly mixed | Indirect contact testing with extract (specimen) | IDG-SW3 | ATP-based Luminescence | |
Jung et al. [66] | MTA Fillapex®, BioRootTM RCS, AH PlusTM, PCS, Medium (control) | N = 1 (triplicate) per group | Freshly mixed and Set (48 h) | Indirect contact testing with extract (sealer disc) | hPDLCs | MTT, Living cell count, LIVE/DEAD® Assay, LDH assay, FDA/PI assay | |
2018 | Vouzara et al. [73] | SimpliSeal®, MTA Fillapex®, BioRootTM RCS, Medium (control) | N ≥2 per group (six replicates) | Set (48 h) | Indirect contact testing with extract (specimen) | NIH/3T3 | Sulforhodamine B |
Alsubait et al. [49] | AH Plus Jet®, Endosequence BCTM, BioRoot RCSTM, Medium (control) | N = 3 (triplicate) | Freshly mixed | Indirect contact testing with extract (specimen) | hMSCs | Alamar blue® | |
Jung et al. [61] | AH PlusTM, PCS, MTA Fillapex®, BioRootTM RCS, Medium (control) | N = 1 (triplicate) | Freshly mixed and Set (48 h) | Indirect contact testing with extract (sealer disc) | hOCs | MTT, Living cell count, LIVE/DEAD® Assay, LDH assay | |
Szczurko et al. [39] | AH Plus Jet®, Apexit® Plus, MTA Fillapex®, GuttaFlow®, MetaSEALTM Soft, Tubli-SealTM, Untreated (control) | n/s | Freshly mixed and Set (24 h) | Indirect contact testing with extract (sealer disc—insert) | hPDLFs | MTT | |
Troiano et al. [38] | AH PlusTM, Sicura Seal, TopSeal®, Medium (control) | N = 3 (triplicate) | Set (24 h) | Direct (sealer disc) and Indirect contact testing with extract (sealer specimen) | MG63 | MTT, LIVE/DEAD® Assay | |
2017 | Arun et al. [22] | Tubli-SealTM, AH PlusTM, SealapexTM, EndoREZ®, Medium (control) [groups with pachymic acid] | N = 3 per group | Freshly mixed | Direct contact testing with sealer | L929 | MTT |
Collado-González et al. [63] | BioRootTM RCS, Endoseal®, Nano-ceramic Sealer (NCS), Medium (control) | N = 1 per group (5 replicate) | Set (48 h) | Indirect contact testing with extract (sealer disc) | hPDLSCs | MTT | |
Collado-González et al. [64] | GuttaFlow® Bioseal, GuttaFlow®2, MTA Fillapex®, AH PlusTM, Medium (control) | N ≥2 per group (5 replicate) | Set (48 h) | Indirect contact testing with extract (sealer disc) | hPDLSCs | MTT | |
Cintra et al. [21] | MTA High plasticity (HP), MTA Angelus®, Medium (control) | N = 1 (triplicate) | Set (6 h) | Indirect contact testing with extract (sealer disc) | L929 | Alamar blue® | |
Zhu et al. [72] | iRoot® SP, MTA, Medium (control) | n/s | Set (24 h) | Indirect contact testing with extract (sealer disc) | RAW 264.7 macrophages | MTT | |
Cintra et al. [20] | Sealer Plus, AH PlusTM, Endofill, SimpliSeal®, Medium (control) | N = 1 (triplicate) | Set (6 h) | Indirect contact testing with extract (sealer disc) | L929 | MTT | |
Lv et al. [70] | iRoot® FS, iRoot® BP Plus, ProRoot® MTA, Medium (control) | N = 3 | Set (7 d) | Indirect contact testing with extract (sealer disc) | MC3T3-E1 | CCK-8/WST-8 | |
Victoria-Escandell et al. [57] | MTA Angelus®, MTA Fillapex®, AH PlusTM, Medium (control) | N = 3 (triplicate) | Powder (MTA Angelus) and Freshly mixed (others) | Indirect contact testing with sealer extract | hDPSCs | Sulforhodamine B | |
2016 | Suciu et al. [23] | MTA Fillapex®, AH PlusTM, Acroseal, Plastic surface (control) | N = 1 (triplicate) | Set (24 h) | Direct contact testing with sealer | hOCs and DF-MSCs | Alamar blue® |
2015 | Camps et al. [45] | BioRootTM RCS, PCS, Medium (control) | N = 30 (N = 3/ group) | Set (24 h) | Indirect contact testing with extract (root model) | hPDLCs | MTT |
Dimitrova-Nakov et al. [24] | BioRootTM RCS, PCS, Untreated cells (controls) | N ≥3 (triplicate) | Set (24 h) | Direct contact testing with sealer disc | A4 mouse pulp SCs | Trypan Blue Dye Exclusion | |
Konjhodzic-Prcic et al. [50] | GuttaFlow®, AH PlusTM, Apexit®, EndoREZ®, Control (n/s) | N = 60 (total) | Set (immediately after, 24 h, 48 h, 7 d) | Indirect contact testing with extract (sealer disc) | hGFs | WST-1 | |
Konjhodzic-Prcic et al. [82] | GuttaFlow®, AH PlusTM, Apexit®, EndoREZ®, Control (n/s) | N = 92 (total) | Set (immediately after, 24 h, 48 h, 7 d) | Indirect contact testing with extract (sealer disc) | L929 | MTT | |
Zhou et al. [51] | Endosequence BCTM, MTA Fillapex®, Medium (control) | N = 1 (triplicate) | Freshly mixed and Set (3x specified time) | Indirect contact testing with extract (sealer disc) | hGFs | Live/Dead (Flow cytometry) | |
Silva et al. [77] | GuttaFlow®2, AH PlusTM, Medium (control) | (triplicate) | Set (4 h) | Indirect contact testing with extract | 3T3 | MTT and LDH leakage | |
Parirokh et al. [56] | Duraflur®, AH PlusTM, AH 26®, Medium (control) | n/s | Set (24 h) | Indirect contact testing with extract (sealer disc) | hGFs | MTT | |
2014 | Jiang et al. [67] | iRoot® BP Plus, iRoot® FS, ProRoot® MTA, SuperEBATM, Medium (control) | n/s | Set (7 d) | Indirect contact testing with extract (sealer disc) | L929 and MG63 | MTT |
Cotti et al. [25] | RealSeal XT, AH Plus Jet®, Untreated (control) | N = 3 per group | Fresh | Direct contact testing with sealer | L929 | MTT and Neutral Red | |
Chang et al. [26] | SealapexTM, Apatite Root Sealer, MTA Fillapex®, iRoot® SP, Medium with & without O.S. (control) | N = 3 (4 wells/ condition) | Set (24 h) | Direct contact testing with sealer disc (with O.S.) | hPDLCs | MTT | |
Mandal et al. [52] | GuttaFlow®2, ProRoot® MTA, AH PlusTM, RealSealTM, Medium (control) | N = 1 (5 replicate) | Fresh and set (72 h) | Indirect contact testing with extract (sealer disc) | hGFs | CCK-8/WST-8 | |
Camargo et al. [83] | AH PlusTM, EndoREZ®, RoekoSeal, Medium (control) | N = 3 (4 wells/ condition) | Freshly mixed and Set (12 h, 24 h) | Indirect contact testing with extract (sealer layer) | V79 | MTT | |
2013 | Güven et al. [40] | MTA Fillapex®, iRoot® SP, AH Plus Jet®, Control (n/s) | N = 6 per group | Set (24 h) | Indirect contact testing with extract (sealer disc - insert) | hTGSCs | MTS |
Kim et al. [84] | AH PlusTM | N ≥3 per group | Freshly mixed | Indirect contact testing with extract (sealer cylinder) | MC3T3-E1 | MTT | |
2012 | De-Deus et al. [46] | iRoot® BP Plus, ProRoot® MTA, Medium (negative control), ZOE cement (positive control) | N = 2 | Fresh (after root-end filling) | Indirect contact testing with extract (root model) | hOCs | XTT, Neutral Red, Crystal violet dye |
Bin et al. [71] | MTA Angelus®, MTA Fillapex®, AH PlusTM, Untreated (control) | N = 3 (4 replicates/group) | Set (12 h, 48 h, 72 h) | Indirect contact testing with extract (specimen) | V79 | MTT | |
Scelza et al. [53] | RealSeal SETM, AH PlusTM, GuttaFlow®, SealapexTM, Roth 801, ThermaSeal® Plus, Medium (control) | N = 2 (triplicate) | Freshly mixed | Indirect contact testing with extract (sealer fragments) | hGFs | MTT | |
Salles et al. [41] | MTA Fillapex®, Epiphany® SE, Endofill, Untreated (control) | N = 3 (duplicate) | Set (24 h) | Indirect contact testing with extract (sealer disc - insert) | Saos-2 | MTT | |
Landuyt et al. [54] | AH Plus Jet®, EndoREZ®, RealSealTM, Calcicur (control), Medium (negative control), 1% Triton X-100 (positive control) | N = 4 per group | Freshly mixed | Indirect contact testing with extract (specimen) | hGFs | XTT | |
Shon et al. [42] | CAPSEAL I and II, Apatite Root Sealer type I and III, PCS EWT, Medium (control) | N = 6 | Set (3 h) | Indirect contact testing with extract (sealer disc - insert) | MG63 | MTT | |
2011 | Mukhtar-Fayyad [85] | BioAggregate®, iRoot® SP, Medium (control) | N ≥2 per group | Set (3x specified time) | Indirect contact testing with extract (sealer disc) | hMRC-5 fibroblasts | MTT |
Zoufan et al. [75] | GuttaFlow®, Endosequence BCTM, AH Plus Jet®, TubliSeal XpressTM, Untreated (control) | N = 3 per group | Freshly mixed and Set (72 h) | Indirect contact testing with extract (sealer specimen) | L929 | MTT | |
Loushine et al. [43] | Endosequence BCTM, AH PlusTM, PCS EWT (positive control), Teflon (negative control) | N = 1 (6 replicate) | Set (72 h AH Plus and 240 h others) | Indirect contact testing with extract (sealer disc-insert) | MC3T3-E1 | MTT | |
Brackett et al. [36] | AH Plus Jet®, PCS, ProRoot® MTA, Experimental calcium-silicate sealer, Teflon (control) | N = 6 per group | Set (72 h) | Direct contact testing with sealer disc specimens (“aged” for 12 weeks) | THP1 monocytic cells | MTT | |
2010 | Yu et al. [86] | AH 26®, Control (n/s) | N ≥3 per group | Freshly mixed | Indirect contact testing with extract (sealer cylinder) | MC3T3-E1 | MTT |
Zhang et al. [68] | iRoot® SP, AH PlusTM, Medium (control) | N ≥2 (six replicates) | Set (24 h) | Indirect contact testing with extract (sealer disc) | MG63 | MTT | |
Huang et al. [58] | AH 26®, Canals, N2®, Untreated (control) | N = 3 per group | Set (24 h) | Indirect contact testing with extract (sealer disc) | U2OS | Alamar blue® | |
Bryan et al. [44] | Experimental sealer (calcium silicate-based), AH PlusTM, PCS, Teflon (negative control) | n/s | Set (24 h) | Indirect contact testing with extract (sealer disc—insert) | MC3T3-E1 | MTT | |
2009 | Ames et al. [27] | EndoREZ®, RealSealTM, MetaSEALTM, RealSeal SETM, PCS (positive control), Teflon (negative control) | n/s | Set (72 h) | Direct contact testing with sealer disc | ROS 17/12.8 | MTT |
Donadio et al. [87] | Activ GPTM, RealSealTM, AH 26®, Kerr Sealer, Untreated (control) | N = 3 | Freshly mixed and Set (72 h) | Indirect contact testing with extract (sealer disc) | L929 | MTT | |
Gambarini et al. [88] | Epiphany® SE, Epiphany®, PCS, Untreated (control) | N = 1 (6 replicate) | Set (24 h) | Indirect contact testing with extract (sealer cylinder) | Mouse 3T3 fibroblasts | Neutral Red | |
Camargo et al. [89] | AH PlusTM, Epiphany®, Acroseal, Castor Oil Polymer sealer, Untreated (control) | N = 4 (4 replicate) | Set (6 h) | Indirect contact testing with extract (sealer disc) | V79 | Crystal violet dye | |
Huang et al. [59] | AH 26®, Canals, N2®, Untreated (control) | N = 3 | Set (24 h) | Indirect contact testing with extract (sealer disc) | U2OS | Propidium iodide | |
2008 | Heitman et al. [28] | Epiphany®, Untreated (control) | N = 1 (triplicate) | Freshly mixed | Direct contact testing with fresh sealer | hPDLFs | Crystal violet dye |
Valois and Azevedo [78] | AH PlusTM, Endofill, Sealer 26, Medium from empty molds (control) | N = 2 (6 replicate) | Freshly mixed | Indirect contact testing with extract (sealer disc) | Mouse 3T3 fibroblasts | MTT | |
Pinna et al. [29] | MetaSEALTM, AH Plus Jet®, PCS, PMMA (positive control), Teflon (negative control) | n/s | Set (72 h) | Direct contact testing with sealer disc | ROS 17/12.8 | MTT | |
Huang et al. [60] | AH 26®, Canals, N2®, Untreated (control) | N ≥3 (triplicate) | Freshly mixed | Indirect contact testing with extract (sealer disc) | U2OS | Hoechst 33258 fluorescence | |
Lodienė et al. [30] | AH PlusTM, EndoREZ®, RoekoSeal Automix, Epiphany®, Medium (control) | N = 6–9 | Fresh and set (24 h or light-curing) | Direct contact (sample) and Indirect contact (extract) | L929 | MTT | |
2007 | Lee et al. [80] | N2®, SealapexTM, AH 26®, Control (n/s) | N = 1 (triplicate) | Freshly mixed | Indirect contact testing with extract (sealer sample) | RAW 264.7 macrophages | CCK-8/WST-8 |
Lee et al. [79] | AH 26®, UDMA, Control (n/s) | N = 1 (triplicate) | Freshly mixed | Indirect contact testing with extract (sealer sample) | RPC-C2A | MTT | |
Lee et al. [81] | N2®, SealapexTM, AH 26®, Control (n/s) | N = 1 (triplicate) | Freshly mixed | Indirect contact testing with extract (sealer sample) | MC3T3-E1 | MTT | |
Merdad et al. [37] | Epiphany®, AH PlusTM, Filters with cells and no sealer and filters with no cells and with sealer (controls) | N = 3 | Freshly mixed and set (24 h, 48 h) | Direct and indirect contact testing with sealer specimens | HeLa | Millipore filter assay | |
2006 | Key et al. [31] | Epiphany®, Resilon, GP, Grossman, Thermaseal®, SealapexTM. Isotonic saline and 10% formaldehyde (controls) | N = 1 (triplicate) | Fresh (1 h) and set (24 h) | Direct contact testing with sealer | hGFs | Trypan Blue Dye Exclusion |
Bouillaguet et al. [32] | AH PlusTM, Epiphany®, GuttaFlow®, Teflon (control) | N = 4 | Set (overnight) | Direct contact testing with sealer disc | Balb/c 3T3 fibroblasts | MTT | |
2005 | Miletic et al. [33] | Roekoseal Automix, AH PlusTM, Control (n/s) | N = 2 per group | Set (1 h, 1 d, 2 d, 7 d, 1 m) | Direct contact testing with sealer | HeLa and L929 | Nigrosin Dye |
2004 | Al-Awadhi et al. [90] | SealapexTM, PCS, Roekoseal Automix, Medium (control) | n/s | Freshly mixed | Indirect contact testing with extract (sealer sample) | Embryonic rat osteoblasts | Trypan Blue Dye Exclusion |
Bouillaguet et al. [34] | PCS, RoekoSeal, TopSeal®, EndoREZ®, Teflon (control) | N = 4 | Fresh (after setting) and set (24 h) | Direct contact testing with sealer | Balb/c 3T3 fibroblasts | MTT | |
2003 | Camps and About [47] | AH PlusTM, CortisomolTM, SealapexTM, Medium (control) | N = 10 per group | Freshly mixed and set (24 h) | Indirect contact with extract (sample & root model) | L929 | MTT |
Mendes et al. [35] | PCS, Endofill, Medium (control) | N = 3 (duplicate) | Freshly mixed | Direct contact testing with sealer fragments | Balb/c macrophages | Trypan Blue Dye Exclusion | |
2002 | Schwarze et al. [48] | AH PlusTM, Apexit®, Endométhasone, KetacTM Endo, N2®, RoekoSeal, Gutta-percha, Medium (control) | N = 3 (6 replicate) | Fresh (after root-end filling) | Indirect contact testing with extract (sealer sample) | 3T3 fibroblast and hPDLFs | XTT |
Huang et al. [91] | AH 26®, AH PlusTM, Medium, and DMSO (controls) | N = 5 per group | Freshly mixed | Indirect contact testing with extract (sealer sample) | Rat cerebral astrocytes | MTT | |
Schwarze et al. [65] | N2®, Endométhasone, Apexit®, AH PlusTM, KetacTM Endo, Untreated (control) | N = 3 (5 replicate) | Freshly and set (1 h, 5 h, 24 h) | Indirect contact testing with extract (sealer sample) | 3T3 fibroblast and hPDLFs | XTT | |
2000 | Azar et al. [55] | AH 26®, AH PlusTM, ZOE, Distilled water (positive control) | N = 4–8 | Freshly mixed | Indirect contact testing with extract (sealer disc) | hGFs | Neutral Red |
Huang et al. [17] | AH 26®, AH PlusTM, Medium (control) | N = 3 | Freshly mixed | Direct contact testing with DMSO-immersed sealer | Rat hepatocytes | LDH leakage | |
Schweikl and Schmalz [69] | AH PlusTM, Control (n/s) | N ≥ 3 (eight replicates) | Freshly mixed and set (24 h) | Indirect contact testing with extract (sealer specimen) | V79B lung fibroblasts | Crystal violet dye |
Appendix C
Year | Study | Groups | N | Material Condition (Setting Time) | Method | Teeth for Root Canal Filling | Animal Model |
---|---|---|---|---|---|---|---|
2019 | Santos et al. [92] | G1: Empty PE tube (control); G2: GuttaFlow® Bioseal; G3: GuttaFlow®2; G4: AH PlusTM | N = 16 (4 implants per animal) | Freshly mixed | Subcutaneous tissue response to implant | - | Wistar rat |
2015 | Assmann et al. [112] | G1: MTA Fillapex®; G2: AH PlusTM; G3: Empty cavity (control) | N = 15 (5 per time point) | Freshly mixed | Bone tissue response to implant | - | Wistar rat |
2014 | Silva et al. [105] | G1: Sealapex XpressTM/GP; G2: RealSeal XT/Resilon | N = 38 canals (SX/GP: 16, RS/R: 22) | Freshly mixed | Periapical tissue response to root canal filling | 19 PMs (max. and mand.) | Beagle dog |
2012 | Zmener et al. [103] | MTA Fillapex®; Grossman’s sealer (positive control) | N = 24 animals (8 per period) | Freshly mixed | Subcutaneous tissue response to sealer implants | - | Wistar rat |
2011 | Suzuki et al. [106] | G1: Endométhasone/GP (short of apical foramen); G2: Endométhasone/GP (overfilling) | N = 20 canals (10/group) | Freshly mixed | Periapical tissue response to root canal filling | INC (max.) and PMs (max. and mand.) | Mongrel dog (2) |
2010 | Garcia et al. [93] | Epiphany/Resilon (G1: with self-etch primer, G2: without primer); G3: Endofill/GP; G4: Empty dentin tube | N = 15 (4 implants per animal) | Set (photoactivated) | Subcutaneous tissue response to implant | - | Rat |
Oliveira et al. [94] | G1: AH PlusTM; G2: AH PlusTM with calcium hydroxide 5% (w/w); G3: Control (n/s) | N = 30 (assigned to groups) | Freshly mixed | Subcutaneous tissue response to implant | - | Wistar rat | |
Brasil et al. [107] | G1: Epiphany®/Resilon system; G2: Pulp Canal Sealer/GP | N = 30 canals (distributed to 2 groups) | Freshly mixed | Periapical tissue response to root canal filling | PMs (max. and mand.) | Beagle dog (2) | |
Zmener et al. [95] | G1: EndoREZ® + polymerization accelerator; G2: RealSealTM; G3: PCS (positive control); G4: Solid silicone rods (control) | N = 8 per group | Freshly mixed | Subcutaneous tissue response to implant | - | Wistar rat | |
Suzuki et al. [108] | G1: EndoREZ®/GP (short of the apical foramen); G2: EndoREZ®/GP (overfilling) | N = 20 canals (10/group) | Freshly mixed | Periapical tissue response to root canal filling | INC (max.) and PMs (max. and mand.) | Mongrel dog (2) | |
2009 | Tanomaru-Filho et al. [109] | G1: Intrafill; G2: AH PlusTM; G3: RoekoSeal; G4: Epiphany®/Resilon system | N = 64 canals (16/group) | Freshly mixed | Periapical tissue response to root canal filling | PMs (max. and mand.) | Mongrel dog (4) |
Derakhshan et al. [104] | RoekoSeal Automix, AH 26®, AH PlusTM, Empty PE tubes (control) | N = 72 animals (12 per group) | Freshly mixed and set (1 d) | Subcutaneous tissue response to sealer implants | - | Wistar rat | |
2008 | Leonardo et al. [110] | G1: RoekoSeal Automix; G2: AH PlusTM | N = 32 canals (16/group) | Freshly mixed | Periapical tissue response to root canal filling | PMs (max. and mand.) | Dog (2) |
Campos-Pinto et al. [96] | G1: Epiphany®; G2: Photoactivated Epiphany®; G3: Epiphany® with self-etch primer; G4: Photoactivated Epiphany® with primer; G5: Empty PE tube | N = 15 (5 implants per animal) | Freshly mixed and set (photoactivated) | Subcutaneous tissue response to implant | - | Wistar rat | |
2007 | Zafalon et al. [97] | G1: Endométhasone; G2: EndoREZ® (lateral wall outside of Teflon tube was the negative control) | N = 40 (20/group) | Freshly mixed | Subcutaneous tissue response to implant | - | Rat 1 |
Onay et al. [98] | G1: Teflon (negative control); G2: Epiphany®; G3: Gutta-percha; G4: Resilon | N = 36 (4 implants per animal) | Freshly mixed | Subcutaneous tissue response to implant | - | Wistar rat | |
2006 | Tanomaru-Filho et al. [113] | G1: Sealer 26; G2: SealapexTM + ZnO; G3: MTA; G4: No retrofilling | N = 48 canals (10–14 per group) | Freshly mixed | Periapical tissue response (retrofilling after PA lesion) | PMs (max. and mand.) | Mongrel dog (4) |
Cintra et al. [111] | G1: Empty PE tubes (control); G2: ProRoot® MTA; G3: MBPc (new calcium hydroxide-based sealer) | N = 48 (equally distributed) | Freshly mixed | Alveolar tissue response to implant | - | Wistar rat | |
2004 | Kim et al. [100] | G1: PCS EWT; G2: ARS (type I); G3: ARS (type II); G4: CAPSEAL I; G5: CAPSEAL II; G6: Empty PTFE tube (control) | N = 64 (total) | Freshly mixed | Subcutaneous tissue response to implant | - | Spraghe-Dawley rat |
Zmener [101] | G1: EndoREZ®; G2: Solid silicone rods | N = 24 (5–6 per time period) | Freshly mixed | Subcutaneous tissue response to implant | - | Wistar rat | |
2001 | Figueiredo et al. [102] | G1: N-Rickert; G2: AH 26®; G3: Fillcanal; G4: Sealer 26 | N = 30 (7–8/group) | Freshly mixed | Subcutaneous tissue response to implant | - | NZ rabbit |
References
- Hargreaves, K.M.; Berman, L.H. Cohen’s Pathways of the Pulp, 11th ed.; Elsevier: St. Louis, MO, USA, 2016; ISBN 978-0-323-09635-5. [Google Scholar]
- Johnson, W.; Kulild, J.C.; Tay, F. Obturation of the Cleaned and Shaped Root Canal System. In Cohen’s Pathways of the Pulp; Hargreaves, K.M., Berman, L.H., Eds.; Elsevier: St. Louis, MO, USA, 2016; pp. 280–322. [Google Scholar]
- Grossman, L. Endodontics, 11th ed.; Lea & Febiger: Philadelphia, PA, USA, 1988. [Google Scholar]
- Kishen, A.; Peters, O.A.; Zehnder, M.; Diogenes, A.R.; Nair, M.K. Advances in endodontics: Potential applications in clinical practice. J. Conserv. Dent. 2016, 19, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Ørstavik, D. Materials used for root canal obturation: Technical, biological and clinical testing. Endod. Top. 2005, 12, 25–38. [Google Scholar] [CrossRef]
- AL-Haddad, A.; Che Ab Aziz, Z.A. Bioceramic-Based Root Canal Sealers: A Review. Int. J. Biomater. 2016, 2016, 9753210. [Google Scholar] [CrossRef] [Green Version]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef]
- Browne, R.M. Animal tests for biocompatibility of dental materials—Relevance, advantages and limitations. J. Dent. 1994, 22, S21–S24. [Google Scholar] [CrossRef]
- Williams, D.F. Biocompatibility: An overview. In Concise Encyclopaedia of Medical and Dental Materials; William, D.F., Ed.; Pergamon Press: Oxford, UK, 1990; pp. 51–59. [Google Scholar]
- Langeland, K. Root canal sealants and pastes. Dent. Clin. N. Am. 1974, 18, 309. [Google Scholar]
- Schmalz, G. Use of cell cultures for toxicity testing of dental materials—Advantages and limitations. J. Dent. 1994, 22, S6–S11. [Google Scholar] [CrossRef]
- Donnermeyer, D.; Bürklein, S.; Dammaschke, T.; Schäfer, E. Endodontic sealers based on calcium silicates: A systematic review. Odontology 2018. [Google Scholar] [CrossRef]
- Oliveira, N.G.; Souza Araújo, P.R.; Silveira, M.T.; Veras Sobral, A.P.; Carvalho, M.V. Comparison of the biocompatibility of calcium silicate-based materials to mineral trioxide aggregate: Systematic review. Eur. J. Dent. 2018, 12, 317. [Google Scholar] [CrossRef]
- Silva Almeida, L.H.; Moraes, R.R.; Morgental, R.D.; Pappen, F.G. Are Premixed Calcium Silicate-based Endodontic Sealers Comparable to Conventional Materials? A Systematic Review of In Vitro Studies. J. Endod. 2017, 43, 527–535. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Riva, J.J.; Malik, K.M.P.; Burnie, S.J.; Endicott, A.R.; Busse, J.W. What is your research question? An introduction to the PICOT format for clinicians. J. Can. Chiropr. Assoc. 2012, 56, 167–171. [Google Scholar]
- Huang, T.H.; Lii, C.K.; Chou, M.Y.; Kao, C.T. Lactate dehydrogenase leakage of hepatocytes with AH26 and AH plus sealer treatments. J. Endod. 2000, 26, 509–511. [Google Scholar] [CrossRef]
- Faggion, C.M. Guidelines for Reporting Pre-clinical In Vitro Studies on Dental Materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Cintra, L.T.A.; Benetti, F.; Azevedo Queiroz, Í.O.; Ferreira, L.L.; Massunari, L.; Bueno, C.R.E.; Oliveira, S.H.P.; Gomes-Filho, J.E. Evaluation of the Cytotoxicity and Biocompatibility of New Resin Epoxy-based Endodontic Sealer Containing Calcium Hydroxide. J. Endod. 2017, 43, 2088–2092. [Google Scholar] [CrossRef] [Green Version]
- Cintra, L.T.A.; Benetti, F.; Azevedo Queiroz, Í.O.; Araújo Lopes, J.M.; Penha de Oliveira, S.H.; Sivieri Araújo, G.; Gomes-Filho, J.E. Cytotoxicity, Biocompatibility, and Biomineralization of the New High-plasticity MTA Material. J. Endod. 2017, 43, 774–778. [Google Scholar] [CrossRef] [Green Version]
- Arun, S.; Sampath, V.; Mahalaxmi, S.; Rajkumar, K. A Comparative Evaluation of the Effect of the Addition of Pachymic Acid on the Cytotoxicity of 4 Different Root Canal Sealers—An In Vitro Study. J. Endod. 2017, 43, 96–99. [Google Scholar] [CrossRef]
- Suciu, I.; Soritau, O.; Gheorghe, I.; Lazăr, V.; Bodnar, D.C.; Delean, A.G.; Scărlătescu, S.A.; Stanciu, R.; Burlibaşa, M.; Dimitriu, B. Biocompatibility testing on cell culture of some root canal sealers used in endodontics. Rom. Biotechnol. Lett. 2016, 21, 11543–11549. [Google Scholar]
- Dimitrova-Nakov, S.; Uzunoglu, E.; Ardila-Osorio, H.; Baudry, A.; Richard, G.; Kellermann, O.; Goldberg, M. In vitro bioactivity of BiorootTM RCS, via A4 mouse pulpal stem cells. Dent. Mater. 2015, 31, 1290–1297. [Google Scholar] [CrossRef]
- Cotti, E.; Petreucic, V.; Re, D.; Simbula, G. Cytotoxicity Evaluation of a New Resin-based Hybrid Root Canal Sealer: An In Vitro Study. J. Endod. 2014, 40, 124–128. [Google Scholar] [CrossRef]
- Chang, S.W.; Lee, S.Y.; Kang, S.K.; Kum, K.Y.; Kim, E.C. In Vitro Biocompatibility, Inflammatory Response, and Osteogenic Potential of 4 Root Canal Sealers: Sealapex, Sankin Apatite Root Sealer, MTA Fillapex, and iRoot SP Root Canal Sealer. J. Endod. 2014, 40, 1642–1648. [Google Scholar] [CrossRef]
- Ames, J.M.; Loushine, R.J.; Babb, B.R.; Bryan, T.E.; Lockwood, P.E.; Sui, M.; Roberts, S.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Contemporary Methacrylate Resin-based Root Canal Sealers Exhibit Different Degrees of Ex Vivo Cytotoxicity When Cured in Their Self-cured Mode. J. Endod. 2009, 35, 225–228. [Google Scholar] [CrossRef]
- Heitman, E.P.; Joyce, A.P.; McPherson, J.C.; Roberts, S.; Chuang, A. An In Vitro Evaluation of the Growth of Human Periodontal Ligament Fibroblasts after Exposure to a Methacrylate-based Endodontic Sealer. J. Endod. 2008, 34, 186–189. [Google Scholar] [CrossRef]
- Pinna, L.; Brackett, M.G.; Lockwood, P.E.; Huffman, B.P.; Mai, S.; Cotti, E.; Dettori, C.; Pashley, D.H.; Tay, F.R. In Vitro Cytotoxicity Evaluation of a Self-adhesive, Methacrylate Resin-based Root Canal Sealer. J. Endod. 2008, 34, 1085–1088. [Google Scholar] [CrossRef]
- Lodienė, G.; Morisbak, E.; Bruzell, E.; Ørstavik, D. Toxicity evaluation of root canal sealers in vitro. Int. Endod. J. 2008, 41, 72–77. [Google Scholar] [CrossRef]
- Key, J.E.; Rahemtulla, F.G.; Eleazer, P.D. Cytotoxicity of a New Root Canal Filling Material on Human Gingival Fibroblasts. J. Endod. 2006, 32, 756–758. [Google Scholar] [CrossRef]
- Bouillaguet, S.; Wataha, J.C.; Tay, F.R.; Brackett, M.G.; Lockwood, P.E. Initial In Vitro Biological Response to Contemporary Endodontic Sealers. J. Endod. 2006, 32, 989–992. [Google Scholar] [CrossRef]
- Miletić, I.; Devčić, N.; Anić, I.; Borčić, J.; Karlović, Z.; Osmak, M. The Cytotoxicity of RoekoSeal and AH Plus Compared during Different Setting Periods. J. Endod. 2005, 31, 307–309. [Google Scholar] [CrossRef]
- Bouillaguet, S.; Wataha, J.C.; Lockwood, P.E.; Galgano, C.; Golay, A.; Krejci, I. Cytotoxicity and sealing properties of four classes of endodontic sealers evaluated by succinic dehydrogenase activity and confocal laser scanning microscopy. Eur. J. Oral Sci. 2004, 112, 182–187. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Mendes, S.T.; Sobrinho, A.P.R.; De Carvalho, A.T.; De Souza Côrtes, M.I.; Vieira, L.Q. In vitro evaluation of the cytotoxicity of two root canal sealers on macrophage activity. J. Endod. 2003, 29, 95–99. [Google Scholar] [CrossRef]
- Brackett, M.G.; Lewis, J.B.; Messer, R.L.W.; Lei, L.; Lockwood, P.E.; Wataha, J.C. Dysregulation of monocytic cytokine secretion by endodontic sealers. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 97, 49–57. [Google Scholar] [CrossRef]
- Merdad, K.; Pascon, A.E.; Kulkarni, G.; Santerre, P.; Friedman, S. Short-Term Cytotoxicity Assessment of Components of the Epiphany Resin-Percha Obturating System by Indirect and Direct Contact Millipore Filter Assays. J. Endod. 2007, 33, 24–27. [Google Scholar] [CrossRef]
- Troiano, G.; Perrone, D.; Dioguardi, M.; Buonavoglia, A.; Ardito, F.; Lo Muzio, L. In vitro evaluation of the cytotoxic activity of three epoxy resin-based endodontic sealers. Dent. Mater. J. 2018, 37, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Szczurko, G.; Pawińska, M.; Łuczaj-Cepowicz, E.; Kierklo, A.; Marczuk-Kolada, G.; Hołownia, A. Effect of root canal sealers on human periodontal ligament fibroblast viability: Ex vivo study. Odontology 2018, 106, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Güven, E.P.; Yalvaç, M.E.; Kayahan, M.B.; Sunay, H.; SahIn, F.; Bayirli, G. Human tooth germ stem cell response to calcium-silicate based endodontic cements. J. Appl. Oral Sci. 2013, 21, 351–357. [Google Scholar] [CrossRef]
- Salles, L.P.; Gomes-Cornélio, A.L.; Guimarães, F.C.; Herrera, B.S.; Bao, S.N.; Rossa-Junior, C.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M. Mineral Trioxide Aggregate-based Endodontic Sealer Stimulates Hydroxyapatite Nucleation in Human Osteoblast-like Cell Culture. J. Endod. 2012, 38, 971–976. [Google Scholar] [CrossRef]
- Shon, W.J.; Bae, K.S.; Baek, S.H.; Kum, K.Y.; Han, A.R.; Lee, W.C. Effects of calcium phosphate endodontic sealers on the behavior of human periodontal ligament fibroblasts and MG63 osteoblast-like cells. J. Biomed. Mater. Res. B. Appl. Biomater. 2012, 100, 2141–2147. [Google Scholar] [CrossRef]
- Loushine, B.A.; Bryan, T.E.; Looney, S.W.; Gillen, B.M.; Loushine, R.J.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Setting Properties and Cytotoxicity Evaluation of a Premixed Bioceramic Root Canal Sealer. J. Endod. 2011, 37, 673–677. [Google Scholar] [CrossRef]
- Bryan, T.E.; Khechen, K.; Brackett, M.G.; Messer, R.L.W.; El-Awady, A.; Primus, C.M.; Gutmann, J.L.; Tay, F.R. In Vitro Osteogenic Potential of an Experimental Calcium Silicate-based Root Canal Sealer. J. Endod. 2010, 36, 1163–1169. [Google Scholar] [CrossRef]
- Camps, J.; Jeanneau, C.; El Ayachi, I.; Laurent, P.; About, I. Bioactivity of a Calcium Silicate-based Endodontic Cement (BioRoot RCS): Interactions with Human Periodontal Ligament Cells In Vitro. J. Endod. 2015, 41, 1469–1473. [Google Scholar] [CrossRef]
- De-Deus, G.; Canabarro, A.; Alves, G.G.; Marins, J.R.; Linhares, A.B.R.; Granjeiro, J.M. Cytocompatibility of the ready-to-use bioceramic putty repair cement iRoot BP Plus with primary human osteoblasts. Int. Endod. J. 2012, 45, 508–513. [Google Scholar] [CrossRef]
- Camps, J.; About, I. Cytotoxicity testing of endodontic sealers: A new method. J. Endod. 2003, 29, 583–586. [Google Scholar] [CrossRef]
- Schwarze, T.; Leyhausen, G.; Geurtsen, W. Long-Term Cytocompatibility of Various Endodontic Sealers Using a New Root Canal Model. J. Endod. 2002, 28, 749–753. [Google Scholar] [CrossRef]
- Alsubait, S.A.; Al Ajlan, R.; Mitwalli, H.; Aburaisi, N.; Mahmood, A.; Muthurangan, M.; Almadhri, R.; Alfayez, M.; Anil, S. Cytotoxicity of Different Concentrations of Three Root Canal Sealers on Human Mesenchymal Stem Cells. Biomolecules 2018, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Konjhodzic-Prcic, A.; Gorduysus, O.; Kucukkaya, S.; Atila, B.; Muftuoglu, S.; Zeybek, D. In Vitro Comparison of Cytotoxicity of Four Root Canal Sealers on Human Gingival Fibroblasts. Med. Arch. 2015, 69, 24. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Du, T.; Shen, Y.; Wang, Z.; Zheng, Y.; Haapasalo, M. In Vitro Cytotoxicity of Calcium Silicate-containing Endodontic Sealers. J. Endod. 2015, 41, 56–61. [Google Scholar] [CrossRef]
- Mandal, P.; Zhao, J.; Sah, S.K.; Huang, Y.; Liu, J. In Vitro Cytotoxicity of GuttaFlow 2 on Human Gingival Fibroblasts. J. Endod. 2014, 40, 1156–1159. [Google Scholar] [CrossRef]
- Scelza, M.Z.; Coil, J.; Alves, G.G. Effect of time of extraction on the biocompatibility of endodontic sealers with primary human fibroblasts. Braz. Oral Res. 2012, 26, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Van Landuyt, K.L.; Geebelen, B.; Shehata, M.; Furche, S.L.; Durner, J.; Van Meerbeek, B.; Hickel, R.; Reichl, F.X. No Evidence for DNA Double-strand Breaks Caused by Endodontic Sealers. J. Endod. 2012, 38, 636–641. [Google Scholar] [CrossRef]
- Azar, N.G.; Heidari, M.; Bahrami, Z.S.; Shokri, F. In Vitro Cytotoxicity of a New Epoxy Resin Root Canal Sealer. J. Endod. 2000, 26, 462–465. [Google Scholar] [CrossRef]
- Parirokh, M.; Forghani, F.R.; Paseban, H.; Asgary, S.; Askarifard, S.; Esmaeeli Mahani, S. Cytotoxicity of two resin-based sealers and a fluoride varnish on human gingival fibroblasts. Iran. Endod. J. 2015, 10, 89–92. [Google Scholar]
- Victoria-Escandell, A.; Ibañez-Cabellos, J.S.; de Cutanda, S.B.S.; Berenguer-Pascual, E.; Beltrán-García, J.; García-López, E.; Pallardó, F.V.; García-Giménez, J.L.; Pallarés-Sabater, A.; Zarzosa-López, I.; et al. Cellular Responses in Human Dental Pulp Stem Cells Treated with Three Endodontic Materials. Stem Cells Int. 2017, 2017, 8920356. [Google Scholar] [CrossRef]
- Huang, F.M.; Yang, S.F.; Chang, Y.C. Effects of Root Canal Sealers on Alkaline Phosphatase in Human Osteoblastic Cells. J. Endod. 2010, 36, 1230–1233. [Google Scholar] [CrossRef]
- Huang, F.M.; Lee, S.S.; Yang, S.F.; Chang, Y.C. Up-regulation of Receptor Activator Nuclear Factor–Kappa B Ligand Expression by Root Canal Sealers in Human Osteoblastic Cells. J. Endod. 2009, 35, 363–366. [Google Scholar] [CrossRef]
- Huang, F.M.; Yang, S.F.; Chang, Y.C. Up-regulation of Gelatinases and Tissue Type Plasminogen Activator by Root Canal Sealers in Human Osteoblastic Cells. J. Endod. 2008, 34, 291–294. [Google Scholar] [CrossRef]
- Jung, S.; Sielker, S.; Hanisch, M.R.; Libricht, V.; Schäfer, E.; Dammaschke, T. Cytotoxic effects of four different root canal sealers on human osteoblasts. PLoS ONE 2018, 13, e0194467. [Google Scholar] [CrossRef] [Green Version]
- Jeanneau, C.; Giraud, T.; Laurent, P.; About, I. BioRoot RCS Extracts Modulate the Early Mechanisms of Periodontal Inflammation and Regeneration. J. Endod. 2019, 45. [Google Scholar] [CrossRef]
- Collado-González, M.; García-Bernal, D.; Oñate-Sánchez, R.E.; Ortolani-Seltenerich, P.S.; Lozano, A.; Forner, L.; Llena, C.; Rodríguez-Lozano, F.J. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int. Endod. J. 2017, 50, 875–884. [Google Scholar] [CrossRef]
- Collado-González, M.; Tomás-Catalá, C.J.; Oñate-Sánchez, R.E.; Moraleda, J.M.; Rodríguez-Lozano, F.J. Cytotoxicity of GuttaFlow Bioseal, GuttaFlow2, MTA Fillapex, and AH Plus on Human Periodontal Ligament Stem Cells. J. Endod. 2017, 43, 816–822. [Google Scholar] [CrossRef]
- Schwarze, T.; Fiedler, I.; Leyhausen, G.; Geurtsen, W. The Cellular Compatibility of Five Endodontic Sealers during the Setting Period. J. Endod. 2002, 28, 784–786. [Google Scholar] [CrossRef]
- Jung, S.; Libricht, V.; Sielker, S.; Hanisch, M.R.; Schäfer, E.; Dammaschke, T. Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo. Odontology 2019, 107, 54–63. [Google Scholar] [CrossRef]
- Jiang, Y.; Zheng, Q.; Zhou, X.; Gao, Y.; Huang, D. A Comparative Study on Root Canal Repair Materials: A Cytocompatibility Assessment in L929 and MG63 Cells. Sci. World J. 2014, 2014, 463826. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, Z.; Peng, B. Effects of iRoot SP on Mineralization-related Genes Expression in MG63 Cells. J. Endod. 2010, 36, 1978–1982. [Google Scholar] [CrossRef]
- Schweikl, H.; Schmalz, G. The induction of micronuclei in V79 cells by the root canal filling material AH Plus. Biomaterials 2000, 21, 939–944. [Google Scholar] [CrossRef]
- Lv, F.; Zhu, L.; Zhang, J.; Yu, J.; Cheng, X.; Peng, B. Evaluation of the in vitro biocompatibility of a new fast-setting ready-to-use root filling and repair material. Int. Endod. J. 2017, 50, 540–548. [Google Scholar] [CrossRef]
- Bin, C.V.; Valera, M.C.; Camargo, S.E.A.A.; Rabelo, S.B.; Silva, G.O.; Balducci, I.; Camargo, C.H.R. Cytotoxicity and genotoxicity of root canal sealers based on mineral trioxide aggregate. J. Endod. 2012, 38, 495–500. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, Z.; Yan, P.; Li, Y.; Jiang, H.; Huang, S. Effect of iRoot SP and mineral trioxide aggregate (MTA) on the viability and polarization of macrophages. Arch. Oral Biol. 2017, 80, 27–33. [Google Scholar] [CrossRef]
- Vouzara, T.; Dimosiari, G.; Koulaouzidou, E.A.; Economides, N. Cytotoxicity of a New Calcium Silicate Endodontic Sealer. J. Endod. 2018, 44, 849–852. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Wealleans, J.A.; Kuhn, N.; Diogenes, A. Comparative Biocompatibility and Osteogenic Potential of Two Bioceramic Sealers. J. Endod. 2019, 45, 51–56. [Google Scholar] [CrossRef]
- Zoufan, K.; Jiang, J.; Komabayashi, T.; Wang, Y.H.; Safavi, K.E.; Zhu, Q. Cytotoxicity evaluation of Gutta Flow and Endo Sequence BC sealers. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, 657–661. [Google Scholar] [CrossRef]
- Lee, B.N.; Hong, J.U.; Kim, S.M.; Jang, J.H.; Chang, H.S.; Hwang, Y.C.; Hwang, I.N.; Oh, W.M. Anti-inflammatory and Osteogenic Effects of Calcium Silicate-based Root Canal Sealers. J. Endod. 2019, 45, 73–78. [Google Scholar] [CrossRef]
- Silva, E.J.N.L.; Neves, A.A.; De-Deus, G.; Accorsi-Mendonça, T.; Moraes, A.P.; Valentim, R.M.; Moreira, E.J. Cytotoxicity and gelatinolytic activity of a new silicon-based endodontic sealer. J. Appl. Biomater. Funct. Mater. 2015, 13, e376–e380. [Google Scholar] [CrossRef] [Green Version]
- Valois, C.R.A.; Azevedo, R.B. Cell-cycle deregulation induced by three different root canal sealers in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 106, 763–767. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, B.S.; Lee, Y.K.; Yang, H.C. In vitro biological adverse effects of dental resin monomers and endodontic root canal sealers. Curr. Appl. Phys. 2007, 7, e130–e134. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, N.R.; Lim, B.S.; Lee, Y.K.; Hwang, K.K.; Yang, H.C. Effects of Root Canal Sealers on Lipopolysaccharide-induced Expression of Cyclooxygenase-2 mRNA in Murine Macrophage Cells. J. Endod. 2007, 33, 1329–1333. [Google Scholar] [CrossRef]
- Lee, D.H.; Lim, B.S.; Lee, Y.K.; Yang, H.C. Mechanisms of root canal sealers cytotoxicity on osteoblastic cell line MC3T3-E1. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 104, 717–721. [Google Scholar] [CrossRef]
- Konjhodzic-Prcic, A.; Jakupovic, S.; Hasic-Brankovic, L.; Vukovic, A. Evaluation of Biocompatibility of Root Canal Sealers on L929 Fibroblasts with Multiscan EX Spectrophotometer. Acta Inform. Med. 2015, 23, 135–137. [Google Scholar] [CrossRef] [Green Version]
- Camargo, C.H.R.; Oliveira, T.R.; Silva, G.O.; Rabelo, S.B.; Valera, M.C.; Cavalcanti, B.N. Setting Time Affects In Vitro Biological Properties of Root Canal Sealers. J. Endod. 2014, 40, 530–533. [Google Scholar] [CrossRef]
- Kim, T.G.; Lee, Y.H.; Lee, N.H.; Bhattarai, G.; Lee, I.K.; Yun, B.S.; Yi, H.K. The Antioxidant Property of Pachymic Acid Improves Bone Disturbance against AH Plus-induced Inflammation in MC-3T3 E1 Cells. J. Endod. 2013, 39, 461–466. [Google Scholar] [CrossRef]
- Mukhtar-Fayyad, D. Cytocompatibility of new bioceramic-based materials on human fibroblast cells (MRC-5). Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 112, e137–e142. [Google Scholar] [CrossRef]
- Yu, M.K.; Lee, Y.H.; Yoon, M.R.; Bhattarai, G.; Lee, N.H.; Kim, T.G.; Jhee, E.C.; Yi, H.K. Attenuation of AH26-Induced Apoptosis by Inhibition of SAPK/JNK Pathway in MC-3T3 E1 Cells. J. Endod. 2010, 36, 1967–1971. [Google Scholar] [CrossRef]
- Donadio, M.; Jiang, J.; He, J.; Wang, Y.H.; Safavi, K.E.; Zhu, Q. Cytotoxicity evaluation of Activ GP and Resilon sealers in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, e74–e78. [Google Scholar] [CrossRef]
- Gambarini, G.; Romeo, U.; Tucci, E.; Gerosa, R.; Nocca, G.; Lupi, A.; De Luca, M.; Quaranta, M.; Gagliani, M.; Testarelli, L. Cytotoxicity of epiphany SE endodontic sealer: A comparative in vitro study. Med. Sci. Monit. 2009, 15, PI15–PI18. [Google Scholar]
- Camargo, C.H.R.; Camargo, S.E.A.; Valera, M.C.; Hiller, K.A.; Schmalz, G.; Schweikl, H. The induction of cytotoxicity, oxidative stress, and genotoxicity by root canal sealers in mammalian cells. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 108, 952–960. [Google Scholar] [CrossRef]
- Al-Awadhi, S.; Spears, R.; Gutmann, J.L.; Opperman, L.A. Cultured Primary Osteoblast Viability and Apoptosis in the Presence of Root Canal Sealers. J. Endod. 2004, 30, 527–533. [Google Scholar] [CrossRef]
- Huang, T.H.; Yang, J.J.; Li, H.; Kao, C.T. The biocompatibility evaluation of epoxy resin-based root canal sealers in vitro. Biomaterials 2002, 23, 77–83. [Google Scholar] [CrossRef]
- Santos, J.M.; Pereira, S.; Sequeira, D.B.; Messias, A.L.; Martins, J.B.; Cunha, H.; Palma, P.J.; Santos, A.C. Biocompatibility of a bioceramic silicone-based sealer in subcutaneous tissue. J. Oral Sci. 2019, 61, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.F.R.; Marques, A.A.F.; Roselino, L.M.R.; Pires-de-Souza, F.C.P.; Consani, S. Biocompatibility Evaluation of Epiphany/Resilon Root Canal Filling System in Subcutaneous Tissue of Rats. J. Endod. 2010, 36, 110–114. [Google Scholar] [CrossRef]
- Oliveira, R.L.; Oliveira Filho, R.S.; Gomes, H.C.; Franco, M.F.; Enokihara, M.M.S.S.; Duarte, M.A.H. Influence of calcium hydroxide addition to AH Plus sealer on its biocompatibility. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, e50–e54. [Google Scholar] [CrossRef]
- Zmener, O.; Pameijer, C.H.; Kokubu, G.A.; Grana, D.R. Subcutaneous Connective Tissue Reaction to Methacrylate Resin-based and Zinc Oxide and Eugenol Sealers. J. Endod. 2010, 36, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Campos-Pinto, M.M.D.; Oliveira, D.A.; Versiani, M.A.; Silva-Sousa, Y.T.C.; Sousa-Neto, M.D.; Cruz Perez, D.E. Assessment of the biocompatibility of Epiphany root canal sealer in rat subcutaneous tissues. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 105, e77–e81. [Google Scholar] [CrossRef] [PubMed]
- Zafalon, E.J.; Versiani, M.A.; de Souza, C.J.A.; Moura, C.C.G.; Dechichi, P. In vivo comparison of the biocompatibility of two root canal sealers implanted into the subcutaneous connective tissue of rats. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 103, e88–e94. [Google Scholar] [CrossRef] [PubMed]
- Onay, E.O.; Ungor, M.; Ozdemir, B.H. In vivo evaluation of the biocompatibility of a new resin-based obturation system. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2007, 104, e60–e66. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.; Rahimi, S.; Lotfi, M.; Yavari, H.; Gaderian, A. A Comparative Study of the Biocompatibility of Three Root-end Filling Materials in Rat Connective Tissue. J. Endod. 2006, 32, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Baek, S.H.; Bae, K.S. In Vivo Study on the Biocompatibility of Newly Developed Calcium Phosphate-Based Root Canal Sealers. J. Endod. 2004, 30, 708–711. [Google Scholar] [CrossRef]
- Zmener, O. Tissue Response to a New Methacrylate-Based Root Canal Sealer: Preliminary Observations in the Subcutaneous Connective Tissue of Rats. J. Endod. 2004, 30, 348–351. [Google Scholar] [CrossRef]
- Figueiredo, J.A.P.; Pesce, H.F.; Gioso, M.A.; Figueiredo, M.A.Z. The histological effects of four endodontic sealers implanted in the oral mucosa: Submucous injection versus implant in polyethylene tubes. Int. Endod. J. 2001, 34, 377–385. [Google Scholar] [CrossRef]
- Zmener, O.; Martinez Lalis, R.; Pameijer, C.H.; Chaves, C.; Kokubu, G.; Grana, D. Reaction of rat subcutaneous connective tissue to a mineral trioxide aggregate-based and a zinc oxide and eugenol sealer. J. Endod. 2012, 38, 1233–1238. [Google Scholar] [CrossRef]
- Derakhshan, S.; Adl, A.; Parirokh, M.; Mashadiabbas, F.; Haghdoost, A.A. Comparing subcutaneous tissue responses to freshly mixed and set root canal sealers. Iran. Endod. J. 2009, 4, 152–157. [Google Scholar]
- Silva, L.A.B.; Barnett, F.; Pumarola-Suñé, J.; Cañadas, P.S.; Nelson-Filho, P.; Silva, R.A.B. Sealapex Xpress and RealSeal XT Feature Tissue Compatibility In Vivo. J. Endod. 2014, 40, 1424–1428. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, P.; de Souza, V.; Holland, R.; Gomes-Filho, J.E.; Murata, S.S.; Dezan Junior, E.; dos Passos, T.R. Tissue reaction to Endométhasone sealer in root canal fillings short of or beyond the apical foramen. J. Appl. Oral Sci. 2011, 19, 511–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brasil, D.S.; Soares, J.A.; Horta, M.C.R.; Ferreira, C.L.; Nunes, E.; Chaves, G.G.; Silveira, F.F. Periapical Repair in Dog Teeth: Root Canal Adhesive Filling by Using the Resilon System. J. Endod. 2010, 36, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, P.; de Souza, V.; Holland, R.; Murata, S.S.; Gomes-Filho, J.E.; Dezan Junior, E.; dos Passos, T.R. Tissue reaction of the EndoREZ in root canal fillings short of or beyond an apical foramenlike communication. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2010, 109, e94–e99. [Google Scholar] [CrossRef] [PubMed]
- Tanomaru-Filho, M.; Tanomaru, J.M.G.; Leonardo, M.R.; da Silva, L.A.B. Periapical repair after root canal filling with different root canal sealers. Braz. Dent. J. 2009, 20, 389–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardo, M.R.; Flores, D.S.H.; de Paula e Silva, F.W.G.; de Toledo Leonardo, R.; da Silva, L.A.B. A Comparison Study of Periapical Repair in Dogs’ Teeth Using RoekoSeal and AH Plus Root Canal Sealers: A Histopathological Evaluation. J. Endod. 2008, 34, 822–825. [Google Scholar] [CrossRef]
- Cintra, L.T.A.; Moraes, I.G.; Estrada, B.P.F.; Gomes-Filho, J.E.; Bramante, C.M.; Garcia, R.B.; Bernardinelli, N. Evaluation of the Tissue Response to MTA and MBPC: Microscopic Analysis of Implants in Alveolar Bone of Rats. J. Endod. 2006, 32, 556–559. [Google Scholar] [CrossRef]
- Assmann, E.; Böttcher, D.E.; Hoppe, C.B.; Grecca, F.S.; Kopper, P.M.P. Evaluation of Bone Tissue Response to a Sealer Containing Mineral Trioxide Aggregate. J. Endod. 2015, 41, 62–66. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Luis, M.R.; Leonardo, M.R.; Tanomaru, J.M.G.; Silva, L.A.B. Evaluation of periapical repair following retrograde filling with different root-end filling materials in dog teeth with periapical lesions. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 102, 127–132. [Google Scholar] [CrossRef]
- Torabinejad, M.; Parirokh, M. Mineral Trioxide Aggregate: A Comprehensive Literature Review—Part II: Leakage and Biocompatibility Investigations. J. Endod. 2010, 36, 190–202. [Google Scholar] [CrossRef]
Parameter | Assessment |
---|---|
Population (P) | In vitro: cell models In vivo: animal models of tissue inflammatory reaction |
Intervention (I) | In vitro: sealer specimens or sealer extracts In vivo: sealer implants (subcutaneous, alveolar socket, or intraosseous) or root filling procedures |
Comparison (C) | Other root canal sealers or non-exposed control groups |
Outcome (O) | In vitro: cytotoxicity (measured as cell viability or proliferation) In vivo: biocompatibility (measured as tissue response to the material) |
Year | Study | Groups (G) | Tissue Response | Exposure Time | Type of Analysis | Outcomes Assessed | Biocompatibility |
---|---|---|---|---|---|---|---|
2019 | Santos et al. [92] | G1: Empty polyethylene (PE) tube (control); G2: GuttaFlow® Bioseal; G3: GuttaFlow®2; G4: AH PlusTM | Subcutaneous | 8 d, 30 d | Histology (Hematoxylin-eosin, H&E) | Macrophage infiltrate, thickness of fibrous capsule, vascular changes | At 8 d, GuttaFlow® Bioseal had lower inflammatory reaction than GuttaFlow®2, AH PlusTM. All biocompatible at 30 d. |
2015 | Assmann et al. [112] | G1: Mineral Trioxide Aggregated (MTA) Fillapex®; G2: AH PlusTM; G3: Empty cavity (control) | Bone | 7 d, 30 d, 90 d | Histology (H&E) | Inflammatory infiltrate, fibers and hard tissue barrier formation | Both sealers provided re-establishment of original bone tissue structure. Inflammatory reaction decreased over time. |
2014 | Silva et al. [105] | G1: Sealapex XpressTM/GP (Gutta-Percha); G2: RealSeal XT/Resilon | Periapical | 90 d | Histology (H&E and immunohistochemistry or IHC for mineralization markers) | Biological apical sealing, inflammatory infiltrate, root and bone resorption | Both sealers allowed biological apical sealing with deposition of mineralized tissue. |
2012 | Zmener et al. [103] | MTA Fillapex®; Grossman’s sealer (positive control) | Subcutaneous | 10 d, 30 d, 90 d | Histology (H&E) | Thickness of a fibrous capsule, vascular changes, and various types of inflammatory cells | MTA Fillapex® toxic for 90 d, Grossman’s sealer toxic only at 10 d and 30 d |
2011 | Suzuki et al. [106] | G1: Endométhasone/GP (short of apical foramen); G2: Endométhasone/GP (overfilling) | Periapical | 90 d | Histology (H&E) | Biological apical sealing, root resorption, inflammatory infiltrate, presence of giant foreign-body cells and thickness and organization of periodontal ligament (PDL) | Chronic inflammatory infiltrate in all specimens. Best result obtained with filling short of the apical foramen (vs. overfilling). |
2010 | Garcia et al. [93] | Epiphany/Resilon (G1: with self-etch primer, G2: without primer); G3: Endofill/GP; G4: Empty dentin tube | Subcutaneous | 7 d, 21 d, 42 d | Histology (H&E) | Inflammatory infiltrate, capacity of cellularity and vascularization, macrophagic activity | Epiphany/Resilon system with primer had lower inflammation, compared to system without primer, but higher compared to Endofill + GP. |
Oliveira et al. [94] | G1: AH PlusTM; G2: AH PlusTM with calcium hydroxide 5% (w/w); G3: Control (n/s) | Subcutaneous | 14 d | Histology (H&E, Masson´s Trichrome) | Inflammatory response (lymphocytes, plasmocytes, neutrophils, eosinophils, macrophages, giant foreign-body cells, blood vessels) | All showed nonspecific chronic inflammation. Calcium hydroxide improved biocompatibility of AH PlusTM. | |
Brasil et al. [107] | G1: Epiphany®/Resilon system; G2: Kerr’s Pulp Canal SealerTM (PCS)/GP | Periapical | 60 d | Radiographic evaluation and histology (H&E) | Radiographic evaluation (quality of filling, apical limit and extruded material) and histology (biological apical sealing, PDL thickness, inflammatory reaction, resorption) | Similar biocompatibility between systems: mild inflammatory reaction (macrophages and lymphocytes). | |
Zmener et al. [95] | G1: EndoREZ® + polymerization accelerator; G2: RealSealTM; G3: PCS (positive control); G4: Solid silicone rods (control) | Subcutaneous | 10 d, 30 d, 90 d | Histology (H&E) | Fibrous capsule formation, inflammatory infiltrate (polymorphonuclear or PMN leukocytes, lymphocytes, plasmocytes, macrophages, giant foreign-body cells), capillaries | EndoREZ® and RealSealTM had severe inflammation reaction (resolved over time). PCS had severe reaction (over time). | |
Suzuki et al. [108] | G1: EndoREZ®/GP (short of the apical foramen); G2: EndoREZ®/GP (overfilling) | Periapical | 90 d | Histology (H&E, Brown and Brenn staining) | Biological apical sealing, apical cementum resorption, intensity of inflammatory infiltrate, organization and thickness of PDL | Both groups showed inflammation. Best result obtained with filling short of the apical foramen (vs. overfilling). | |
2009 | Tanomaru-Filho et al. [109] | G1: Intrafill; G2: AH PlusTM; G3: RoekoSeal; G4: Epiphany®/Resilon system | Periapical | 90 d | Histology (H&E, Mallory Trichrome) | Intensity of inflammatory infiltrate, PDL thickness, bone and apical cementum resorption, biological apical sealing | AH PlusTM, RoekoSeal, Epiphany® (slight to moderate) > Intrafill (severe inflammation and PDL thickening) |
Derakhshan et al. [104] | RoekoSeal Automix, AH 26®, AH PlusTM, Empty PE tubes (control) | Subcutaneous | 7 d, 14 d, 60 d | Histology (H&E) | Thickness of connective tissue capsule, severity and extent of inflammation and necrosis | RoekoSeal and AH PlusTM biocompatible; extent of inflammation was higher with AH26® | |
2008 | Leonardo et al. [110] | G1: RoekoSeal Automix; G2: AH PlusTM | Periapical | 90 d | Histology (H&E, Mallory Trichrome, Brown and Brenn staining) | Newly mineralized formed tissue, periapical inflammatory infiltrate, apical PDL thickness, cementum, dentin and bone resorption | For biological apical sealing: RoekoSeal > AH PlusTM. Similar infiltrate, PDL thickening and resorption. |
Campos-Pinto et al. [96] | G1: Epiphany®; G2: Photoactivated Epiphany®; G3: Epiphany® with self-etch primer; G4: Photoactivated Epiphany® with primer; G5: Empty PE tube | Subcutaneous | 7 d, 21 d, 42 d | Histology (H&E) | Neutrophils, leukocytes, macrophages, lymphocytes, plasmocytes, giant foreign-body cells, dispersed material, necrotic tissue | All groups showed mild inflammation. Group 2 showed necrosis and more inflammation. | |
2007 | Zafalon et al. [97] | G1: Endométhasone; G2: EndoREZ® (lateral wall outside of Teflon tube was the negative control) | Subcutaneous | 15 d, 30 d, 60 d, 90 d | Histology (H&E) | Féderation Dentaire Internationale (FDI) criteria: new bone, neutrophils, macrophages, lymphocytes, plasmocytes, giant foreign-body cells, dispersed material, capsule, necrotic tissue, resorption | Endométhasone (tissue reaction decreased over time) > EndoREZ® (highly toxic and late hypersensitive reaction) |
Onay et al. [98] | G1: Teflon (negative control); G2: Epiphany®; G3: Gutta-percha; G4: Resilon | Subcutaneous | 1 w, 4 w, 8 w | Histology (H&E, Masson´s Trichrome) | Stromal inflammatory response, infiltration of mast cells, proliferation of fibroblasts, vascular changes, granulation tissue, giant foreign-body cells | All groups induced inflammation. Tissue reaction decreased over time. | |
2006 | Tanomaru-Filho et al. [113] | G1: Sealer 26; G2: SealapexTM + ZnO (Zinc Oxide); G3: MTA; G4: No retrofilling | Periapical (after lesion) | 180 d | Histology (H&E, Mallory Trichrome) | Periapical inflammatory infiltrate, apical PDL thickness, deposition of cementum on the sectioned apical surface, cementum and bone resorption, apical dentin resorption | Sealer 26, SealapexTM with ZnO and MTA provided periapical repair. Control showed unsatisfactory periapical repair. |
Cintra et al. [111] | G1: Empty PE tubes (control); G2: ProRoot® MTA; G3: MBPc (new calcium hydroxide-based sealer) | Alveolar | 7 d, 15 d, 30 d | Histology (H&E, Brown and Brenn staining) | Extent and intensity inflammatory infiltrate based on cell count and extension beyond implants | All groups showed similar biological response (mild to moderate inflammatory response). | |
2004 | Kim et al. [100] | G1: PCS EWT; G2: Apatite Root Sealer (ARS) type I; G3: ARS type II; G4: CAPSEAL I; G5: CAPSEAL II; G6: Empty polytetrafluoroethylene (PTFE) tube (control) | Subcutaneous | 1 w, 2 w, 4 w, 12 w | Histology (H&E) | Thickness of reaction zone, inflammatory infiltrate (macrophages, plasmocytes, lymphocytes, neutrophils | Capseal groups showed lower tissue response than others. In all groups, inflammatory reaction decreased over time. |
Zmener [101] | G1: EndoREZ®; G2: Solid silicone rods | Subcutaneous | 10 d, 30 d, 90 d, 120 d | Histology (H&E) | Fibrous capsule formation, inflammatory infiltrate (PMN leukocytes, lymphocytes, plasmocytes, macrophages, giant foreign-body cells), capillaries | Inflammation was observed with EndoREZ® (decreased with time). Control showed mild inflammation only at 10 d. | |
2001 | Figueiredo et al. [102] | G1: N-Rickert; G2: AH 26®; G3: Fillcanal; G4: Sealer 26 | Subcutaneous | 90 d | Histology (H&E) | Histopathologic evaluation (granulation tissue, lymphocytes, PMN neutrophils and eosinophils, plasmocytes, macrophages, giant foreign-body cells) | Sealer 26 (mild irritation) > N-Rickert and AH 26® (moderate) > Fillcanal (severe irritation). |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, D.A.; Paula, A.B.; Marto, C.M.; Coelho, A.; Paulo, S.; Martinho, J.P.; Carrilho, E.; Ferreira, M.M. Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies. Materials 2019, 12, 4113. https://doi.org/10.3390/ma12244113
Fonseca DA, Paula AB, Marto CM, Coelho A, Paulo S, Martinho JP, Carrilho E, Ferreira MM. Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies. Materials. 2019; 12(24):4113. https://doi.org/10.3390/ma12244113
Chicago/Turabian StyleFonseca, Diogo Afonso, Anabela Baptista Paula, Carlos Miguel Marto, Ana Coelho, Siri Paulo, José Pedro Martinho, Eunice Carrilho, and Manuel Marques Ferreira. 2019. "Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies" Materials 12, no. 24: 4113. https://doi.org/10.3390/ma12244113
APA StyleFonseca, D. A., Paula, A. B., Marto, C. M., Coelho, A., Paulo, S., Martinho, J. P., Carrilho, E., & Ferreira, M. M. (2019). Biocompatibility of Root Canal Sealers: A Systematic Review of In Vitro and In Vivo Studies. Materials, 12(24), 4113. https://doi.org/10.3390/ma12244113