Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Determination of Levels of each Factor in the Taguchi Orthogonal Array
2.3. Fabrication and Testing of Specimens
3. Experimental Results and Effects of Factors
3.1. Overall Trends
3.2. Contribution of Each Factor by ANOVA
4. Development of Predictive Equations for Compressive Strength of GPCC
4.1. Multiple Regression
4.2. Rate Constant Concept
5. Prediction of Split Tensile Strength
6. Conclusions
- (1)
- The measured slump values tended to increase with increases in the molar ratio of H2O/Na2O. When the ratio of H2O/Na2O exceeded 12, a slump greater than 200 mm was obtained for most of the tested GPCCs.
- (2)
- ANOVA results indicated that T and rGS, among others, are more substantial contributing factors to the development of compressive strength of GPCC than the remaining four factors of rAG, rAS, rSH, and NC.
- (3)
- The development of compressive strength of GPCC was greatly affected by the early stage of curing at elevated T in one day, possibly due to the activated geopolymerization along with the hydration accompanied by a higher content of CaO in GGBFS.
- (4)
- A similar level of activation energy is required for GPCC and OPC. However, a higher frequency of molecular collisions could be expected during the chemical reactions in one day of curing at elevated temperature.
- (5)
- The unified model developed based on the rate constant concept with the limiting strength as a function of T and rGS was able to predict the developed compressive strengths of GPCC at different ages with reasonable accuracy. Its overall statistical parameters were shown to be better than those from three separate multiple regression models obtained separately for different , and .
- (6)
- Using the predicted compressive strength by the rate constant model, an equation for the prediction of split tensile strength was also suggested. The predictions made for the split tensile strengths of GPCC tested in this study were shown to be about 10%–20% less than those of OPC, but greater than the predicted values for GPC or GPCC reported in other studies.
- (7)
- The developed GPCC may be used as structural concrete based on its mechanical properties and flowability comparable to those of OPC. The developed model based on the rate constant concept may be useful not only in determining the levels of influential factors for design favoring compressive or split tensile strengths, but also in predicting those at different ages.
Author Contributions
Funding
Conflicts of Interest
References
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.; Rangan, B.V. Factors influencing the compressive strength of fly ash-based geopolymer concrete. Civ. Eng. Dimens. 2004, 6, 88–93. [Google Scholar]
- Fernandez-Jimenez, A.M.; Palomo, A.; Lopez-Hombrados, C. Engineering properties of alkali-activated fly ash concrete. ACI Mater. J. 2006, 103, 106–112. [Google Scholar]
- Sofi, M.; Van Deventer, J.S.J.; Mendis, P.A.; Lukey, G.C. Engineering properties of inorganic polymer concretes (IPCs). Cem. Concr. Res. 2007, 37, 251–257. [Google Scholar] [CrossRef]
- Sumajouw, D.M.; Hardjito, D.; Wallah, S.; Rangan, B.V. Fly ash-based geopolymer concrete: Study of slender reinforced columns. J. Mater. Sci. 2007, 42, 3124–3130. [Google Scholar] [CrossRef]
- Sarker, P.K. Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete. Mater. Struct. 2011, 44, 1021–1030. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr. Build. Mater. 2017, 130, 22–31. [Google Scholar] [CrossRef]
- Puertas, F.; Fernández-Jiménez, A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Comps. 2003, 25, 287–292. [Google Scholar] [CrossRef]
- Zhao, Q.; Nair, B.; Rahimian, T.; Balaguru, P. Novel geopolymer based composites with enhanced ductility. J. Mater. Sci. 2007, 42, 3131–3137. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Bai, E.; Li, W. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system. Constr. Build. Mater. 2012, 29, 482–486. [Google Scholar] [CrossRef]
- Chi, M.; Huang, R. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Constr. Build. Mater. 2013, 40, 291–298. [Google Scholar] [CrossRef]
- Diaz-Loya, E.I.; Allouche, E.N.; Vaidya, S. Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 2011, 108, 300–306. [Google Scholar]
- Nath, P.; Sarker, P.K. Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 2014, 66, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Jawahar, J.G.; Mounika, G. Strength properties of fly ash and GGBS based geopolymer concrete. Asian J. Civ. Eng. 2016, 17, 127–135. [Google Scholar]
- Yang, Z.X.; Ha, N.R.; Jang, M.S.; Hwang, K.H. Geopolymer concrete fabricated by waste concrete sludge with silica fume. Mater. Sci. Forum Trans. Tech. Publ. 2009, 620, 791–794. [Google Scholar] [CrossRef]
- Joseph, B.; Mathew, G. Influence of aggregate content on the behavior of fly ash based geopolymer concrete. Sci. Iran. 2012, 19, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Deb, P.S.; Nath, P.; Sarker, P.K. The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Design. 2014, 62, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Jin-yu, X.; Weimin, L.; Erlei, B. Effect of alkali-activator types on the dynamic compressive deformation behavior of geopolymer concrete. Mater. Lett. 2014, 124, 310–312. [Google Scholar] [CrossRef]
- Rafeet, A.; Vinai, R.; Soutsos, M.; Sha, W. Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr. Build. Mater. 2017, 147, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Riahi, S.; Nazari, A.; Zaarei, D. Compressive strength of ash-based geopolymers at early ages designed by Taguchi method. Mater. Des. 2012, 37, 443–449. [Google Scholar] [CrossRef]
- Bagheri, A.; Nazari, A. Compressive strength of high strength class C fly ash-based geopolymers with reactive granulated blast furnace slag aggregates designed by Taguchi method. Mater. Des. 2014, 54, 483–490. [Google Scholar] [CrossRef]
- Nazari, A.; Bagheri, A.; Riahi, S. Properties of geopolymer with seeded fly ash and rice husk bark ash. Mater. Sci. Eng. A 2011, 528, 7395–7401. [Google Scholar] [CrossRef]
- Olivia, M.; Nikraz, H. Properties of fly ash geopolymer concrete designed by Taguchi method. Mater. Des. 2012, 36, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Heah, C.Y.; Kamarudin, H.; Al Bakri, A.M. Study on solids-to-liquid and alkaline activator ratios on kaolin-based geopolymers. Constr. Build. Mater. 2012, 35, 912–922. [Google Scholar] [CrossRef]
- Ruiz-Santaquiteria, C.; Skibsted, J.; Fernandez-Jimenez, A.; Palomo, A. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem. Concr. Res. 2012, 42, 1242–1251. [Google Scholar] [CrossRef]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Rossignol, S. Influence of raw materials and potassium and silicon concentrations on the formation of a zeolite phase in a geopolymer network during thermal treatment. J. Non-Cryst. Solids. 2012, 358, 1908–1916. [Google Scholar] [CrossRef]
- Rodriguez, E.; Bernal, S.; de Gutiérrez, R.M.; Puertas, Y.F. Alternative concrete based on alkali-activated slag. Mater. Construc. 2008, 58, 53–67. [Google Scholar]
- Provis, J.L.; Harrex, R.M.; Bernal, S.A.; Duxson, P.; van Deventer, J.S.J. Dilatometry of geopolymers as a means of selecting desirable fly ash sources. J. Non-Cryst. Solids 2012, 358, 1930–1937. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). ASTM C618–12a: Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2012. [Google Scholar]
- Taguchi, G.; Chowdhury, S.; Wu, Y. Taguchi’s Quality Engineering Handbook; John Wiley and Sons: Hoboken, NJ, USA, 2005; p. 1736. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C143–05: Standard Test Method for Slump of Hydraulic Cement Concrete; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C496: Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Sumajouw, D.M.; Hardjito, D.; Wallah, S.; Rangan, B.V. Behavior of geopolymer concrete columns under equal load eccentricities. In Proceedings of the Technical Paper for the American Concrete Institute’s Seventh International Symposium on Utilization of High-Strength/High-Performance Concrete, Washington, DC, USA, 20–24 June 2005; pp. 1–18. [Google Scholar]
- Chang, E.H.; Sarker, P.; Lloyd, N.; Rangan, B.V. Bond behaviour of reinforced fly ash-based geopolymer concrete beams. In Proceedings of the 24th Biennial Conference of the Concrete Institute Australia, Luna Park, Sydney, Australia, 17 September 2009; pp. 1–10. Available online: https://espace.curtin.edu.au/handle/20.500.11937/33614 (accessed on 13 December 2019).
- Hardjito, D.; Rangan, B.V. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Research Report GC 1; Faculty of Engineering Curtin University of Technology Perth: Perth, Australia, 2005; Available online: http://www.geopolymer.org/fichiers_pdf/curtin-flyash-GP-concrete-report.pdf (accessed on 13 December 2019).
- Bernhardt, C.J. Hardening of concrete at different temperatures. In Proceedings of the RILEM Symposium on Winter Concreting. In Danish National Institute for Building Research; Danish Building Research Institute: Copenhagen, Denmark, 1956; p. 18. [Google Scholar]
- Tank, R.C.; Carino, N.J. Rate constant functions for strength development of concrete. Mater. J. 1991, 88, 74–83. [Google Scholar]
- American Society for Testing and Materials (ASTM). ASTM C1074-11: Standard Practice for Estimating Concrete Strength by the Maturity Method; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Jonasson, J.E.; Groth, P.; Hedlund, H. Modeling of temperature and moisture field in concrete to study early age movements as a basis for stress analysis. In Thermal Cracking in Concrete at Early Ages: Proceedings of the International RILEM Symposium; CRC Press: London, UK, 1994; pp. 45–54. [Google Scholar]
- Kim, J.K.; Han, S.H.; Lee, K.W. Estimation of compressive strength by a new apparent activation energy function. Cem. Concr. Res. 2001, 31, 1761–1773. [Google Scholar] [CrossRef]
- Abdel-Jawad, Y.A. Estimating Concrete Strength Using a Modified Maturity Model. Constr. Mater. 2006, 159, 33–37. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jang, K.P.; Bang, J.W.; Lee, J.H.; Kim, Y.Y. Prediction of concrete compressive strength considering humidity and temperature in the construction of nuclear power plants. Nucl. Eng. Des. 2014, 275, 23–29. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S.; Nguyen, N. Modeling of compressive strength development of high-early-strength-concrete at different curing temperatures. Int. J. Concr. Struct. M 2016, 10, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.K.; Moon, Y.H.; Eo, S.H. Compressive strength development of concrete with different curing time and temperature. Cem. Concr. Res. 1998, 28, 1761–1773. [Google Scholar] [CrossRef]
- Yi, S.T.; Moon, Y.H.; Kim, J.K. Long-term strength prediction of concrete with curing temperature. Cem. Concr. Res. 2005, 35, 1961–1969. [Google Scholar] [CrossRef]
- Temuujin, J.; Williams, R.P.; Van Riessen, A. Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process Tech. 2009, 209, 5276–5280. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R.; Mehrotra, S.P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer. J. Mater. Sci. 2010, 45, 607–615. [Google Scholar] [CrossRef]
- Lee, N.K.; Lee, H.K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr. Build. Mater. 2013, 47, 1201–1209. [Google Scholar] [CrossRef]
- fib (International Federation for Structural Concrete). Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013. [Google Scholar]
- ACI (American Concrete Institute). ACI 318-14: Building Code Requirements for Structure Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
Factors | Units | Binders | Types | Min. | Max. |
---|---|---|---|---|---|
T [10,21,22,23] | °C | FA, GGBFS, Metakalin | GPCC, GP, GPC | 25 | 90 |
rGS [22] | - | FA, GGBFS | GPCC | 0.30 | 0.55 |
rAG [16,24] | - | FA | GPC | 3.78 | 7.77 |
rAS [24,25,26] | - | FA | GPC, GP | 0.30 | 1.25 |
rSH [13,24] | - | FA | GP | 1 | 2.5 |
NC [21,22,23,27] | M | FA, GGBFS | GPCC, GP | 5 | 14 |
Curing medium [28] | - | FA, GGBFS | GPCC | - | - |
Type of aluminosilicate source [27,29] | - | FA | GPC, GP | - | - |
Parameter | Chemical Compositions (wt.%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | Na2O | P2O5 | TiO2 | LOI * | |
FA | 57.42 | 22.0 | 8.35 | 5.80 | 0.99 | 0.39 | 1.71 | 0.45 | 1.08 | 1.35 | 0.68 |
GGBFS | 32.77 | 13.68 | 0.44 | 44.1 | 3.05 | 4.06 | 0.48 | 0.27 | 0.03 | 0.69 | 2.39 |
No. | Specimen Names | Main Factors | H2O/Na2O | Slumps (mm) | |||||
---|---|---|---|---|---|---|---|---|---|
T (°C) | rGS | rAG | rAS | rSH | NC (M) | ||||
1 | 20 | 0.20 | 3 | 0.50 | 1.5 | 10 | 13.4 | 250 | |
2 | 40 | 0.35 | 3 | 0.55 | 2.0 | 12 | 13.1 | 252 | |
3 | 60 | 0.50 | 3 | 0.60 | 2.5 | 14 | 13.0 | 270 | |
4 | 40 | 0.35 | 3.5 | 0.50 | 1.5 | 14 | 11.2 | 60 | |
5 | 60 | 0.50 | 3.5 | 0.55 | 2.0 | 10 | 14.6 | 210 | |
6 | 20 | 0.20 | 3.5 | 0.60 | 2.5 | 12 | 13.6 | 245 | |
7 | 60 | 0.20 | 4 | 0.50 | 2.0 | 14 | 11.8 | 160 | |
8 | 20 | 0.35 | 4 | 0.55 | 2.5 | 10 | 14.9 | 205 | |
9 | 40 | 0.50 | 4 | 0.60 | 1.5 | 12 | 12.6 | 220 | |
10 | 40 | 0.50 | 3 | 0.50 | 2.5 | 10 | 15.0 | 225 | |
11 | 60 | 0.20 | 3 | 0.55 | 1.5 | 12 | 12.2 | 260 | |
12 | 20 | 0.35 | 3 | 0.60 | 2.0 | 14 | 12.2 | 280 | |
13 | 20 | 0.50 | 3.5 | 0.50 | 2.0 | 12 | 13.2 | 215 | |
14 | 40 | 0.20 | 3.5 | 0.55 | 2.5 | 14 | 12.6 | 235 | |
15 | 60 | 0.35 | 3.5 | 0.60 | 1.5 | 10 | 13.8 | 270 | |
16 | 60 | 0.35 | 4 | 0.50 | 2.5 | 12 | 13.6 | 160 | |
17 | 20 | 0.50 | 4 | 0.55 | 1.5 | 14 | 11.4 | 60 | |
18 | 40 | 0.20 | 4 | 0.60 | 2.0 | 10 | 14.3 | 250 |
Specimen Names | Compressive Strengths (MPa) | Split Tensile Strengths (MPa) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1* | R2* | Avg. | R1 | R2 | Avg. | R1 | R2 | Avg. | R1 | R2 | Avg. | R1 | R2 | Avg. | |
10.0 | 8.0 | 9.0 | 20.7 | 20.9 | 20.8 | 20.2 | 18.8 | 19.5 | 2.25 | 2.20 | 2.22 | 2.21 | 2.55 | 2.38 | |
28.1 | 27.6 | 27.9 | 53.3 | 51.8 | 52.6 | 56.0 | 46.1 | 51.1 | 2.42 | 2.67 | 2.55 | 2.25 | 2.26 | 2.26 | |
47.1 | 48.4 | 47.8 | 61.4 | 61.7 | 61.6 | 72.2 | 73.1 | 72.7 | 3.68 | 4.17 | 3.93 | 3.18 | 7.96 | 5.57 | |
34.4 | 20.9 | 27.7 | 40.6 | 40.7 | 40.7 | 43.7 | 43.7 | 43.7 | 3.62 | 3.07 | 3.35 | 3.60 | 3.60 | 3.60 | |
59.7 | 65.6 | 62.7 | 62.3 | 62.3 | 62.3 | 68.3 | 67.8 | 68.1 | 4.13 | 4.61 | 4.37 | 4.03 | 3.65 | 3.84 | |
9.4 | 8.5 | 9.0 | 18.6 | 21.5 | 20.1 | 19.4 | 18.6 | 19.0 | 1.93 | 2.01 | 1.97 | 2.18 | 1.80 | 1.99 | |
31.0 | 34.6 | 32.8 | 36.9 | 39.9 | 38.4 | 43.9 | 43.8 | 43.9 | 3.52 | 3.53 | 3.53 | 3.07 | 2.46 | 2.77 | |
16.1 | 12.8 | 14.5 | 25.3 | 20.1 | 22.7 | 21.4 | 24.9 | 23.2 | 2.71 | 2.42 | 2.57 | 2.39 | 2.60 | 2.50 | |
32.1 | 32.1 | 32.1 | 61.0 | 61.0 | 61.0 | 55.6 | 54.9 | 55.3 | 4.16 | 4.26 | 4.21 | 3.94 | 4.16 | 4.05 | |
43.3 | 44.3 | 43.8 | 62.8 | 59.6 | 61.2 | 53.6 | 61.0 | 57.3 | 3.69 | 3.21 | 3.45 | 3.15 | 3.04 | 3.10 | |
31.3 | 31.7 | 31.5 | 39.0 | 38.0 | 38.5 | 42.0 | 41.7 | 41.9 | 3.58 | 3.97 | 3.78 | 3.07 | 2.95 | 3.01 | |
11.8 | 11.3 | 11.6 | 19.1 | 22.1 | 20.6 | 18.1 | 21.4 | 19.8 | 2.28 | 2.79 | 2.54 | 2.93 | 2.46 | 2.70 | |
36.2 | 36.2 | 36.2 | 33.5 | 33.5 | 33.5 | 38.1 | 29.2 | 33.7 | 3.34 | 3.06 | 3.20 | 2.82 | 3.78 | 3.30 | |
24.3 | 24.4 | 24.4 | 24.2 | 23.1 | 23.7 | 26.3 | 28.7 | 27.5 | 2.53 | 2.96 | 2.75 | 2.84 | 3.06 | 2.95 | |
46.9 | 47.3 | 47.1 | 58.8 | 61.0 | 59.9 | 59.4 | 57.5 | 58.5 | 3.88 | 4.14 | 4.01 | 3.52 | 3.82 | 3.67 | |
45.8 | 47.2 | 46.5 | 60.4 | 61.4 | 60.9 | 59.7 | 55.4 | 57.6 | 4.68 | 4.81 | 4.75 | 4.60 | 4.67 | 4.64 | |
29.2 | 27.8 | 28.5 | 42.5 | 45.9 | 44.2 | 43.5 | 46.2 | 44.9 | 3.75 | 3.22 | 3.49 | 3.69 | 4.40 | 4.05 | |
19.5 | 20.4 | 20.0 | 21.2 | 17.8 | 19.5 | 18.6 | 15.6 | 17.1 | 2.15 | 2.01 | 2.08 | 2.16 | 1.85 | 2.01 |
Factors | Values of Coefficient for Equation (1) | |
---|---|---|
Dimensionless normalized factors () | and . | |
the best-fitting intercept and the coefficients of the normalized factors at different ages (d) (, , and ) | d = 1 day | |
d = 28 day | ||
d = 90 day | ||
All other -values = 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Shin, S. Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC. Materials 2019, 12, 4198. https://doi.org/10.3390/ma12244198
Lee S, Shin S. Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC. Materials. 2019; 12(24):4198. https://doi.org/10.3390/ma12244198
Chicago/Turabian StyleLee, Songhee, and Sangmin Shin. 2019. "Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC" Materials 12, no. 24: 4198. https://doi.org/10.3390/ma12244198
APA StyleLee, S., & Shin, S. (2019). Prediction on Compressive and Split Tensile Strengths of GGBFS/FA Based GPC. Materials, 12(24), 4198. https://doi.org/10.3390/ma12244198