A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry
Abstract
:1. Introduction
2. The Clinical Relevance of Corrosion
2.1. Types of Corrosion in the Oral Cavity
2.1.1. Galvanic Corrosion
2.1.2. Pitting Corrosion
2.1.3. Fretting Corrosion
2.1.4. Microbial Corrosion
2.2. The Impact of the Corrosion on Dental Implants
2.2.1. Dental Implant- Fracture
2.2.2. Cellular Responses
2.2.3. Fluoride & Implant Corrosion
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daubert, D.; Pozhitkov, A.; McLean, J.; Kotsakis, G. Titanium as a modifier of the peri-implant microbiome structure. Clin. Implant. Dent. Relat. Res. 2018, 20, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Manivasagam, G.; Dhinasekaran, D.; Rajamanickam, A. Biomedical implants: Corrosion and its prevention-a review. Recent Pat. Corros. Sci. 2010, 2, 40–54. [Google Scholar] [CrossRef]
- Mathew, M.T.; Abbey, S.; Hallab, N.J.; Hall, D.J.; Sukotjo, C.; Wimmer, M.A. Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: Synergistic interactions of wear and corrosion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1662–1671. [Google Scholar] [CrossRef] [PubMed]
- Chieruzzi, M.; Rallini, M.; Pagano, S.; Eramo, S.; D’Errico, P.; Torre, L.; Kenny, J.M. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Chieruzzi, M.; Pagano, S.; Cianetti, S.; Lombardo, G.; Kenny, J.M.; Torre, L. Effect of fibre posts, bone losses and fibre content on the biomechanical behaviour of endodontically treated teeth: 3D-finite element analysis. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 74, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.J.; Shen, C.; Rawls, H.R. Phillips’ Science of Dental Materials; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Maruthamuthu, S.; Rajasekar, A.; Sathiyanarayanan, S.; Muthukumar, N.; Palaniswamy, N. Electrochemical behaviour of microbes on orthodontic wires. Curr. Sci. 2005, 89, 988–996. [Google Scholar]
- Kirkpatrick, C.; Barth, S.; Gerdes, T.; Krump-Konvalinkova, V.; Peters, K. Pathomechanismen der gestörten Wundheilung durch metallische Korrosionsprodukte. Mund- Kiefer-Und Gesichtschirurgie 2002, 6, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Tschernitschek, H.; Borchers, L.; Geurtsen, W. Nonalloyed titanium as a bioinert metal–A review. Quintessence Int. 2005, 36, 523–530. [Google Scholar] [CrossRef]
- Zardiackas, L.D.; Roach, M.; Williamson, S.; Bogan, J.-A. Comparison of notch sensitivity and stress corrosion cracking of a low-nickel stainless steel to 316LS and 22Cr-13Ni-5Mn stainless steels. In Stainless Steels for Medical and Surgical Applications; ASTM International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- Prando, D.; Brenna, A.; Diamanti, M.V.; Beretta, S.; Bolzoni, F.; Ormellese, M.; Pedeferri, M. Corrosion of titanium: Part 1: Aggressive environments and main forms of degradation. J. Appl. Biomater. Funct. Mater. 2017, 15. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Qu, Q.; Zuo, L.; He, Y.; Zhu, B.; Li, C. Streptococcus Sanguis Biofilm Architecture and Its Influence on Titanium Corrosion in Enriched Artificial Saliva. Materials 2017, 36, 225. [Google Scholar] [CrossRef]
- Roach, M.D.; McGuire, J.; Williamson, R.S.; Bogan, J.A.; Zardiackas, L.D. Characterization of the torsional properties of stainless steel and titanium alloys used as implants. In Proceedings of the 7th World Biomaterials Congress, Sydney, Australia, 17–21 May 2004; pp. 17–21. [Google Scholar]
- Zardiackas, L.D.; Kraay, M.J.; Freese, H.L. Titanium, Niobium, Zirconium, and Tantalum for Medical and Surgical Applications; ASTM: West Conshohocken, PA, USA, 2006. [Google Scholar]
- Scarano, A.; Perrotti, V.; Piattelli, A.; Iaculli, F.; Iezzi, G. Sealing capability of implant-abutment junction under cyclic loading: A toluidine blue in vitro study. J. Appl. Biomater. Funct. Mater. 2015, 13, e293–e295. [Google Scholar] [CrossRef]
- Geis-Gerstorfer, J.; Weber, H.; Sauer, K.H. In vitro substance loss due to galvanic corrosion in Ti implant/Ni-Cr supraconstruction systems. Int. J. Oral Maxillofac. Implant. 1989, 4, 119–123. [Google Scholar]
- Sikora, C.L.; Alfaro, M.F.; Yuan, J.C.-C.; Barao, V.A.; Sukotjo, C.; Mathew, M.T. Wear and Corrosion Interactions at the Titanium/Zirconia Interface: Dental Implant Application. J. Prosthodont. 2018, 27, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Olmedo, D.; Fernández, M.M.; Guglielmotti, M.B.; Cabrini, R.L. Macrophages related to dental implant failure. Implant. Dent. 2003, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Lorusso, C.; Di Giulio, C.; Mazzatenta, A. Evaluation of the sealing capability of the implant healing screw by using real time volatile organic compounds analysis: Internal hexagon versus cone morse. J. Periodontol. 2016, 87, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Mortellaro, C.; Mavriqi, L.; Pecci, R.; Valbonetti, L. Evaluation of Microgap With Three-Dimensional X-Ray Microtomography: Internal Hexagon Versus Cone Morse. J. Craniofac. Surg. 2016, 27, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.-C.; Oshida, Y.; Gregory, R.L.; Andres, C.J.; Barco, T.M.; Brown, D.T. Electrochemical study on microbiology-related corrosion of metallic dental materials. Bio-Med. Mater. Eng. 2003, 13, 281–295. [Google Scholar]
- Li, L.; Liu, L. Microbial corrosion of dental alloy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2004, 21, 864–866. [Google Scholar]
- Brånemark, P.I.; Hansson, B.O.; Adell, R.; Breine, U.; Lindström, J.; Hallén, O.; Ohman, A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand. J. Plast. Reconstr. Surg. Suppl. 1977, 16, 1–132. [Google Scholar]
- Tagger Green, N.; Machtei, E.E.; Horwitz, J.; Peled, M. Fracture of dental implants: Literature review and report of a case. Implant. Dent. 2002, 11, 137–143. [Google Scholar] [CrossRef]
- Yokoyama, K.; Ichikawa, T.; Murakami, H.; Miyamoto, Y.; Asaoka, K. Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 2002, 23, 2459–2465. [Google Scholar] [CrossRef]
- Chaturvedi, T.P. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J. Dent. Res. 2009, 20, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Cortada, M.; Giner, L.; Costa, S.; Gil, F.J.; Rodríguez, D.; Planell, J.A. Galvanic corrosion behavior of titanium implants coupled to dental alloys. J. Mater. Sci. Mater. Med. 2000, 11, 287–293. [Google Scholar] [CrossRef]
- Harloff, T.; Hönle, W.; Holzwarth, U.; Bader, R.; Thomas, P.; Schuh, A. Titanium allergy or not? “Impurity” of titanium implant materials. Health 2010, 2, 306. [Google Scholar] [CrossRef]
- Fretwurst, T.; Nelson, K.; Tarnow, D.P.; Wang, H.-L.; Giannobile, W.V. Is Metal Particle Release Associated with Peri-implant Bone Destruction? An Emerging Concept. J. Dent. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.; Noumbissi, S.; von Baehr, V. Titanium implants and silent inflammation in jawbone-a critical interplay of dissolved titanium particles and cytokines TNF-α and RANTES/CCL5 on overall health? EPMA J. 2018, 9, 331–343. [Google Scholar] [CrossRef]
- Safioti, L.M.; Kotsakis, G.A.; Pozhitkov, A.E.; Chung, W.O.; Daubert, D.M. Increased Levels of Dissolved Titanium Are Associated With Peri-Implantitis—A Cross-Sectional Study. J. Periodontol. 2017, 88, 436–442. [Google Scholar] [CrossRef]
- Mjöberg, B.; Hellquist, E.; Mallmin, H.; Lindh, U. Aluminum, Alzheimer’s disease and bone fragility. Acta Orthop. Scand. 1997, 68, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Gilbert, J.L.; Urban, R.M. Corrosion of metal orthopaedic implants. J. Bone Jt. Surg. Am. 1998, 80, 268–282. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Valderrama, P.; Wilson, T.G.; Palmer, K.; Thomas, A.; Sridhar, S.; Adapalli, A.; Burbano, M.; Wadhwani, C. Titanium Corrosion Mechanisms in the Oral Environment: A Retrieval Study. Materials 2013, 6, 5258–5274. [Google Scholar] [CrossRef] [Green Version]
- Noronha Oliveira, M.; Schunemann, W.V.H.; Mathew, M.T.; Henriques, B.; Magini, R.S.; Teughels, W.; Souza, J.C.M. Can degradation products released from dental implants affect peri-implant tissues? J. Periodont. Res. 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Urban, R.M.; Jacobs, J.J.; Tomlinson, M.J.; Gavrilovic, J.; Black, J.; Peoc’h, M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J. Bone Jt. Surg. Am. 2000, 82, 457–476. [Google Scholar] [CrossRef]
- Maurer, A.M.; Merritt, K.; Brown, S.A. Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro. J. Biomed. Mater. Res. 1994, 28, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.S.; Pontefract, H.A.; Devine, D.A.; Shore, R.C.; Nattress, B.R.; Kirkham, J.; Robinson, C. Penetration of fluoride into natural plaque biofilms. J. Dent. Res. 2005, 84, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Røynesdal, A.K.; Ambjørnsen, E.; Haanaes, H.R. A comparison of 3 different endosseous nonsubmerged implants in edentulous mandibles: A clinical report. Int. J. Oral Maxillofac. Implant. 1999, 14, 543–548. [Google Scholar]
- Lugowski, S.J.; Smith, D.C.; McHugh, A.D.; Van Loon, J.C. Release of metal ions from dental implant materials in vivo: Determination of Al, Co, Cr, Mo, Ni, V, and Ti in organ tissue. J. Biomed. Mater. Res. 1991, 25, 1443–1458. [Google Scholar] [CrossRef] [PubMed]
- Anwar, E.M.; Kheiralla, L.S.; Tammam, R.H. Effect of fluoride on the corrosion behavior of Ti and Ti6Al4V dental implants coupled with different superstructures. J. Oral Implant. 2011, 37, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Siirilä, H.S.; Könönen, M. The effect of oral topical fluorides on the surface of commercially pure titanium. Int. J. Oral Maxillofac. Implant. 1991, 6, 50–54. [Google Scholar]
- Reed, G.J.; Willman, W. Galvanism in the oral cavity. J. Am. Dent. Assoc. 1940, 27, 1471–1475. [Google Scholar] [CrossRef]
- Tufekci, E.; Mitchell, J.C.; Olesik, J.W.; Brantley, W.A.; Papazoglou, E.; Monaghan, P. Inductively coupled plasma-mass spectroscopy measurements of elemental release from 2 high-palladium dental casting alloys into a corrosion testing medium. J. Prosthet. Dent. 2002, 87, 80–85. [Google Scholar] [CrossRef]
- Sedarat, C.; Harmand, M.F.; Naji, A.; Nowzari, H. In vitro kinetic evaluation of titanium alloy biodegradation. J. Periodont. Res. 2001, 36, 269–274. [Google Scholar] [CrossRef]
- Pettersson, M.; Kelk, P.; Belibasakis, G.N.; Bylund, D.; Molin Thorén, M.; Johansson, A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J. Periodont. Res. 2017, 52, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Kato, T.; Ito, T.; Oda, T.; Sekine, H.; Yoshinari, M.; Yajima, Y. Influence of titanium ions on cytokine levels of murine splenocytes stimulated with periodontopathic bacterial lipopolysaccharide. Int. J. Oral Maxillofac. Implant. 2014, 29, 472–477. [Google Scholar]
- Cadosch, D.; Al-Mushaiqri, M.S.; Gautschi, O.P.; Meagher, J.; Simmen, H.-P.; Filgueira, L. Biocorrosion and uptake of titanium by human osteoclasts. J. Biomed. Mater. Res. A 2010, 95, 1004–1010. [Google Scholar] [CrossRef]
- Robitaille, N.; Reed, D.N.; Walters, J.D.; Kumar, P.S. Periodontal and peri-implant diseases: Identical or fraternal infections? Mol. Oral Microbiol. 2016, 31, 285–301. [Google Scholar] [CrossRef] [PubMed]
- Pagano, S.; Chieruzzi, M.; Balloni, S.; Lombardo, G.; Torre, L.; Bodo, M.; Cianetti, S.; Marinucci, L. Biological, thermal and mechanical characterization of modified glass ionomer cements: The role of nanohydroxyapatite, ciprofloxacin and zinc l-carnosine. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 94, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.C.; Tokuhara, C.K.; Rocha, L.A.; Oliveira, R.C.; Lisboa-Filho, P.N.; Costa Pessoa, J. Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 96, 730–739. [Google Scholar] [CrossRef]
- Scarano, A.; Lorusso, C.; Mortellaro, C.; Limongelli, L.; Tempesta, A.; Favia, G. Peripheral Giant Cell Granuloma Associated With Dental Implants. J. Craniofac. Surg. 2018, 29, e196–e199. [Google Scholar] [CrossRef]
- Sutow, E.J.; Jones, D.W.; Milne, E.L. Materials Science: In vitro Crevice Corrosion Behavior of Implant Materials. J. Dent. Res. 1985, 64, 842–847. [Google Scholar] [CrossRef]
- Ravnholt, G.; Jensen, J. Corrosion investigation of two materials for implant supraconstructions coupled to a titanium implant. Scand. J. Dent. Res. 1991, 99, 181–186. [Google Scholar] [CrossRef]
- Ravnholt, G. Corrosion current and pH rise around titanium coupled to dental alloys. Scand. J. Dent. Res. 1988, 96, 466–472. [Google Scholar] [CrossRef]
- Reclaru, L.; Meyer, J.M. Study of corrosion between a titanium implant and dental alloys. J. Dent. 1994, 22, 159–168. [Google Scholar] [CrossRef]
- Sawada, T.; Schille, C.; Almadani, A.; Geis-Gerstorfer, J. Fretting Corrosion Behavior of Experimental Ti-20Cr Compared to Titanium. Materials 2017, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Bortagaray, M.A.; Ibañez, C.A.A.; Ibañez, M.C.; Ibañez, J.C. Corrosion Analysis of an Experimental Noble Alloy on Commercially Pure Titanium Dental Implants. Open Dent. J. 2016, 10, 486–496. [Google Scholar] [CrossRef] [PubMed]
- AlOtaibi, A.; Sherif, E.-S.M.; Zinelis, S.; Al Jabbari, Y.S. Corrosion behavior of two cp titanium dental implants connected by cobalt chromium metal superstructure in artificial saliva and the influence of immersion time. Int. J. Electrochem. Sci. 2016, 11, 5877–5890. [Google Scholar] [CrossRef]
- Pozhitkov, A.E.; Daubert, D.; Brochwicz Donimirski, A.; Goodgion, D.; Vagin, M.Y.; Leroux, B.G.; Hunter, C.M.; Flemmig, T.F.; Noble, P.A.; Bryers, J.D. Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination of Corrosion. PLoS ONE 2015, 10, e0140393. [Google Scholar] [CrossRef]
- Aparicio, C.; Gil, F.J.; Fonseca, C.; Barbosa, M.; Planell, J.A. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003, 24, 263–273. [Google Scholar] [CrossRef]
- Oh, K.-T.; Kim, K.-N. Electrochemical properties of suprastructures galvanically coupled to a titanium implant. J. Biomed. Mater. Res. Part B Appl. Biomater. 2004, 70, 318–331. [Google Scholar] [CrossRef]
- López-Alías, J.F.; Martinez-Gomis, J.; Anglada, J.M.; Peraire, M. Ion release from dental casting alloys as assessed by a continuous flow system: Nutritional and toxicological implications. Dent. Mater. 2006, 22, 832–837. [Google Scholar] [CrossRef] [Green Version]
- Suárez-López Del Amo, F.; Garaicoa-Pazmiño, C.; Fretwurst, T.; Castilho, R.M.; Squarize, C.H. Dental implants-associated release of titanium particles: A systematic review. Clin. Oral Implant. Res. 2018. [Google Scholar] [CrossRef]
References | Implant Alloys | Medium, Temperature, PH, Period, Method, etc. | Remark |
---|---|---|---|
Tomofumi Sawada et al. [57]. | “Alloys of cast titanium having 20 mass percent chromium or Ti-20Cr & pure titanium” | Electrochemical corrosion at the 0.3 V in 0.9 percent saline solution & mechanical damage that uses ten scratching cycles with 3 various scratching speeds i.e., 10 to 40 mm per second at 10N | Adding the chromium to the titanium reduces surface damage & improvises fretting corrosion resistance. |
Manuel of Alberto Bortagaray et al. [58]. | Titanium dental implants & the abutments | Confocal microscope, artificial salvia. Emerged for three days. | Impactof the electro galvanic corrosion every used material when in contact with the c.p-Ti displayed no statistical vital differences. |
Ala’a Al Otaibi et al. [59] | 2 same kind of cp titanium implant fixtures, Co-Cr framework | Open-circuit potential, artificial saliva, electrochemical impedance spectroscopy, chronoamperometric and cyclic potential-dynamic polarization. | Intensity of the uniform corrosion rises with immersion time in artificial saliva ranging from 1–24 & then to 48 h. |
Alex E. Pozhitkov et al. [60]. | Titanium Implants | Sequencing, DNA, Electrochemical measurements, oral microbiota, Spectrometry, Bacterial culture conditions. | Titanium was found in twenty-eight samples of plaque that corresponded to nearly sixteen patients. |
Danieli C. Rodrigues et al. [34]. | Titanium Implants | Scanning Electron & Digital Microscopy | 3D microscopic analysis depicted evidences of corrosion & bulk exposure i.e., post-cleaning |
Daniel Olmedo et al. [18]. | Orthopedic and Titanium Implants, Grids and Titanium mini-plates | Crystallography, micro-chemical analysis & exfoliative cytology | Whether passivated or noble, every metal shall face slow removal of the ions from surface due to temporal and local variations in environment & micro-structure |
Sutow et al. [53]. | Cast Co-Cr-Mo, Type 316LVM stainless steel, wrought Co-Cr-W-Ni, Nitrided and Non-nitrided Ti-6Al-4V ELI & CPTi, crevice cell, Grades I & 4 | Ringer solution, 37 °C, pH = 7. The Anodic Polarization was performed at the selected levels | The results presented that the treatment of HNO3 passivation reduced the Crevice corrosion susceptibility but discoloration and dulling of the CP-Ti was present which recognized 600 mV was excess of O2 reduction potential. |
Ravnholt and Jensen et al. [39]. | Titanium with prosthodontic and amalgam | 0.9 percent NaCl Solution Potentiostat | No pH or alteration in pH was detected when cobalt chromium, composite, stainless steel, silver palladium alloys or gold was in the metallic contact along titanium. Alterations took place when amalgam came in contact with the titanium. |
Reclaru and Meyer et al. [56]. | Silver-palladium, ternary titanium, gold, Co-Cr alloy. Also Ti implant abutment thing | Artificial saliva, scanning potentiostat, Room temperature | The coupling is to have weak anodi polarization in coupling. Current released by galvanic cell should be weak. Crevice potential has to be higher than common potential |
Cortada et al. [27]. | Titanium oral implant coupled along with various metal superstructures like gold alloy, cast-titanium, silver-palladium alloy, machined-titanium, chromium-nicke l alloy | Artificial saliva at nearly 37 °C. Technique of Coupled plasma mass spectrometry | Titanium oral implant coupled along with chromium-nickel alloy releasing high amount of ions & implant coupled along with titanium superstructure that present low values of the ions released |
Aparicio et al. [61]. | Pure titanium blasted with various materials | Electrochemical behavior | More surface area due to increase in surface roughness that causes differences in electrochemical behavior & corrosion resistance of blasted CP-Ti |
Cyril Sedarat et al. [45]. | Titanium alloy NaCl 0.9 percent & human serum, spectrophotometer for atomic absorption | NaCl 0.9 percent & human serum, spectrophotometer for atomic absorption | 4 percent toxic V & 6 percent Al may eicit systematic and local reactions or may inhibit differentiation and cellular proliferation |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noumbissi, S.; Scarano, A.; Gupta, S. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials 2019, 12, 368. https://doi.org/10.3390/ma12030368
Noumbissi S, Scarano A, Gupta S. A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials. 2019; 12(3):368. https://doi.org/10.3390/ma12030368
Chicago/Turabian StyleNoumbissi, Sammy, Antonio Scarano, and Saurabh Gupta. 2019. "A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry" Materials 12, no. 3: 368. https://doi.org/10.3390/ma12030368
APA StyleNoumbissi, S., Scarano, A., & Gupta, S. (2019). A Literature Review Study on Atomic Ions Dissolution of Titanium and Its Alloys in Implant Dentistry. Materials, 12(3), 368. https://doi.org/10.3390/ma12030368