Effects of High-Temperature Storage on the Elasticity Modulus of an Epoxy Molding Compound
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Experimental Methods
3. Results and Discussion
3.1. Effects of Temperature on the Elasticity Modulus
3.2. Effects of Thermal Aging Time on the Elasticity Modulus
3.3. Effects of Filling Contents on the Elasticity Modulus and Material Failure Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Daniel, L.; Wong, C.P. Materials for Advanced Packaging; Springer: Berlin, Germany, 2009; pp. 339–341. [Google Scholar]
- Belton, D.J. The effect of post-mold curling upon microstructure of epoxy molding compounds. IEEE Trans. Compon. Packag. Manuf. Technol. 1987, 10, 358–363. [Google Scholar] [CrossRef]
- Khazaka, R.; Mendizabal, L.; Henry, D.; Hanna, R. Survey of high-temperature reliability of power electronics packaging components. IEEE Trans. Power Electron. 2015, 30, 2456–2464. [Google Scholar] [CrossRef]
- Kassakian, J.G.; Perreault, D.J. The future of electronics in automobiles. In Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Osaka, Japan, 4–7 June 2001; pp. 15–19. [Google Scholar]
- Scheuermann, U. Reliability challenges of automotive power electronics. Microelectron. Reliab. 2009, 49, 1319–1325. [Google Scholar] [CrossRef]
- Bahi, M.A.; Lecuyer, P.; Fremont, H.; Landesman, J.P. Sequential environmental stresses tests qualification for automotive compoments. Microelectron. Reliab. 2007, 47, 1680–1684. [Google Scholar] [CrossRef]
- Colin, X.; Mavel, A.; Marais, C.; Verdu, J. Interaction between cracking and oxidation in organic martric composites. J. Compos. Mater. 2005, 39, 1371–1389. [Google Scholar] [CrossRef]
- De Vreugd, J.; Jansen, K.M.B.; Ernst, L.J.; Bohm, C.; Pufall, R. High temperature storage influence on molding compound properties. In Proceedings of the 2010 11th International Thermal, Mechanical & Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems (EuroSimE), Bordeaux, France, 26–28 April 2010. [Google Scholar]
- Jansen, K.M.B.; de Vreugd, J.; Ernst, L.J.; Bohm, C. Thermal aging of molding compounds. In Proceedings of the 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging, Xi’an, China, 16–19 August 2010; pp. 778–780. [Google Scholar]
- Noijen, S.; Engelen, R.; Martens, J.; Opran, A.; Van der Sluis, O.; Van Silfhout, R. Prediction of the epoxy moulding compound aging effect on package reliability. Microelectron. Reliab. 2010, 50, 917–922. [Google Scholar] [CrossRef]
- De Vreugd, J. The effect of aging on molding compound properties. PhD. Thesis, Delft University of Technology, Delft, The Netherlands, June 2011. [Google Scholar]
- Yang, D.G.; Wan, F.F.; Shou, Z.Y.; van Driel, W.D.; Scholten, H.; Goumans, L.; Faria, R. Effect of high temperature aging on reliability of automotive electronics. Microelectron. Reliab. 2011, 51, 1938–1942. [Google Scholar] [CrossRef]
- Pufall, R.; Goroll, M.; Mahler, J.; Kanert, W.; Bouazza, M.; Wittler, O.; Dudek, R. Degradation of molding compounds during highly accelerated stress tests-a simple approach to study adhesion by performing button shear tests. Microelectron. Reliab. 2012, 52, 1266–1271. [Google Scholar] [CrossRef]
- Zhang, B.; Johlitz, M.; Lion, A.; Ernst, L.; Jansen, K.M.B.; Vu, D.K.; Weiss, L. Aging of epoxy molding compound-thermo-mechanical properties during high temperature storage. In Proceedings of the 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Montpellier, France, 18–20 April 2016; pp. 1–6. [Google Scholar]
- Cui, Z.; Cai, M.; Li, R.; Zhang, P.; Chen, X.; Yang, D. A numerical procedure for simulating thermal oxidation diffusion of epoxy molding compounds. Microelectron. Reliab. 2015, 55, 1877–1881. [Google Scholar] [CrossRef]
- Zhang, B.; Lion, A.; Johlitz, M.; Ernst, L.; Jansen, K.M.B.; Vu, D.K.; Weiss, L. Modeling of Thermal Aging of Molding Compound by using an Equivalent Layer Assumption. In Proceedings of the 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Dresden, Germany, 3–5 April 2017; pp. 1–6. [Google Scholar]
Filling Contents | Aging Temperatures | Aging Times |
---|---|---|
High (material 1) Low (material 2) | 175 °C 200 °C 225 °C | 0 h (Unaged) 100 h 500 h 1500 h |
Material | Filling Content | E1/MPa | E2/MPa | Tg (tan)/°C |
---|---|---|---|---|
Sample 1 | High (89%) | 16,723 | 815 | 109 |
Sample 2 | Low (79%) | 12,343 | 1235 | 152 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Yang, D.; Zhang, P.; Niu, F.; Cai, M.; Zhang, G. Effects of High-Temperature Storage on the Elasticity Modulus of an Epoxy Molding Compound. Materials 2019, 12, 684. https://doi.org/10.3390/ma12040684
Li R, Yang D, Zhang P, Niu F, Cai M, Zhang G. Effects of High-Temperature Storage on the Elasticity Modulus of an Epoxy Molding Compound. Materials. 2019; 12(4):684. https://doi.org/10.3390/ma12040684
Chicago/Turabian StyleLi, Ruifeng, Daoguo Yang, Ping Zhang, Fanfan Niu, Miao Cai, and Guoqi Zhang. 2019. "Effects of High-Temperature Storage on the Elasticity Modulus of an Epoxy Molding Compound" Materials 12, no. 4: 684. https://doi.org/10.3390/ma12040684
APA StyleLi, R., Yang, D., Zhang, P., Niu, F., Cai, M., & Zhang, G. (2019). Effects of High-Temperature Storage on the Elasticity Modulus of an Epoxy Molding Compound. Materials, 12(4), 684. https://doi.org/10.3390/ma12040684