Mechanical Properties and Anti-Spalling Behavior of Ultra-High Performance Concrete with Recycled and Industrial Steel Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Concrete Preparation
2.3. Test Methods
2.3.1. Concrete Strength and Static Modulus of Elasticity
2.3.2. Fracture Energy Test
2.3.3. Explosive Spalling Test
3. Results
3.1. Mechanical Properties
3.1.1. Compressive Strength
3.1.2. Splitting Tensile Strength
3.1.3. Fracture Energy
3.1.4. Static Elastic Modulus
3.2. Explosive Spalling Behavior
3.2.1. Temperature–Time Curve during Explosive Spalling
3.2.2. Morphology of Spalled Specimens
3.2.3. Number of Spalled Specimens and Average Spalling Depth
3.2.4. Particle Sieving
3.2.5. Analysis of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Council directive 1999/31/EC of 26 April 1999 on the landfill of waste. Off. J. Eur. Commun. 1999, 182, 1–19. [Google Scholar]
- Meddah, A.; Beddar, M.; Bali, A. Use of shredded rubber tire aggregates for roller compacted concrete pavement. J. Clean. Prod. 2014, 72, 187–192. [Google Scholar] [CrossRef]
- Huang, X.Y.; Ranade, R.; Ni, W.; Li Victor, C. On the use of recycled tire rubber to develop low e-modulus ECC for durable concrete repairs. Constr. Build. Mater. 2013, 46, 134–141. [Google Scholar] [CrossRef]
- Azevedo, F.; Pacheco-Torgal, F.; Jesus, C.; Aguiar, J.L.B.D.; Camões, A.F. Properties and durability of HPC with TYRE rubber wastes. Constr. Build. Mater. 2012, 34, 186–191. [Google Scholar] [CrossRef]
- Tortum, A.; Celik, C.; Aydin, A.C. Determination of the optimum conditions for tire rubber in asphalt concrete. Build. Environ. 2005, 40, 1492–1504. [Google Scholar] [CrossRef]
- Gesoğlu, M.; Güneyisi, E.; Khoshnaw, G.; Ipek, S. Investigating properties of pervious concretes containing waste tire rubbers. Constr. Build. Mater. 2014, 63, 206–213. [Google Scholar] [CrossRef]
- Yung, W.H.; Yung, L.C.; Hua, L.H. A study of the durability properties of waste tire rubber applied to self-compacting concrete. Constr. Build. Mater. 2013, 41, 665–672. [Google Scholar] [CrossRef]
- Long, X.H. Experimental Research on Mechanical Properties of Waste Steel Fiber Rubber Modified Recycled Aggregate Concrete. Master Thesis, Guangdong University of Technology, Guangzhou, China, 2011. [Google Scholar]
- Bjegovic, D.; Baricevic, A.; Lakusic, S.; Damjanovic, D.; Duvnjak, I. Positive interaction of industrial and recycled steel fibres in fibre reinforced concrete. J. Civ. Eng. Manag. 2013, 19, 50–60. [Google Scholar] [CrossRef]
- Centonze, G.; Leone, M.; Aiello, M.A. Steel fibers from waste tires as reinforcement in concrete: A mechanical characterization. Constr. Build. Mater. 2012, 36, 46–57. [Google Scholar] [CrossRef]
- Graeffang, A.G.; Pilakoutas, K.; Neocleous, K.; Peres, M.V.N.N. Fatigue resistance and cracking mechanism of concrete pavements reinforced with recycled steel fibres recovered from post-consumer tires. Eng. Struct. 2012, 45, 385–395. [Google Scholar] [CrossRef]
- Bjegovic, D.; Baricevic, A.; Lakusic, S. Innovative low cost fiber-reinforced concrete. Part I: Mechanical and durability properties. In Concrete Repair, Rehabilitation and Retrofitting III; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Tlemat, H.D.I. Steel Fibers from Waste Forms to Concrete: Testing, Modeling and Design. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2004. [Google Scholar]
- Mastali, M.; Dalvand, A. Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Constr. Build. Mater. 2016, 125, 196–209. [Google Scholar] [CrossRef]
- Kojima, M.; Mitsui, K.; Wachi, M. Application of 150 N/mm2 advanced performance composites to high-rise R/C building. In Proceedings of the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, Japan, 27–29 October 2008; Japan Concrete Institute: Tokyo, Japan, 2008; pp. 1199–1206. [Google Scholar]
- Park, C.; Kim, D.; Lee, J. Development of 200 N/mm2 ultra high strength concrete and test application for super high rise building. In Proceedings of the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, Japan, 27–29 October 2008; Japan Concrete Institute: Tokyo, Japan, 2008; pp. 1276–1281. [Google Scholar]
- Riedel, W.; Markus, N.; Elmar, S. Local damage to ultra-high performance concrete structures caused by an impact of aircraft engine missiles. Nucl. Eng. Des. 2010, 240, 2633–2642. [Google Scholar] [CrossRef]
- Lu, L.J. Construction technology of C100 high performance concrete in National Great Theater. Constr. Technol. 2003, 9, 48–50. [Google Scholar]
- Gu, G.R. Preparation, production and ultra-high pumping technology of C100 self-compacting concrete and C100 in Xita building. China Concr. 2009, 7, 31–41. [Google Scholar]
- Dong, Y.N.; Su, L.N.; Xiao, L.Q. Concrete construction technology of Shenyang Huangchao Wanxin building. Coal Technol. 2011, 9, 140–141. [Google Scholar]
- Mush, H.; Ohkuma, H.; Watanabe, N. UFC technology and applications in Japan. In Proceedings of the 9th International Symposium on High Performance Concrete, Design, Verification & Utilization, Rotorua, New Zealand, 9–11 August 2011. [Google Scholar]
- Kim, J.S.; Kim, T.H. A stress analysis of the post-tensioned anchorage zones using UHPC. Key Eng. Mater. 2017, 737, 500–504. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, S.W.; Park, S.Y.; Koh, K.T. R and D activities and application of high performance concrete to cable stayed bridges. In Proceedings of the Third International Symposium on Ultra High Performance Concrete, Kassel, Germany, 7–9 March 2012. [Google Scholar]
- Hwang, H.; Park, S.Y. A study on the flexural behavior of lap-spliced cast-in-place joints under static loading in ultra-high performance concrete bridge deck slabs. Can. Civ. Eng. 2014, 41, 615–623. [Google Scholar] [CrossRef]
- Bindiganvile, V.; Bantha, N.; Aarup, B. Impact response of ultra-high-strength fiber-reinforced cement composite. ACI Mater. J. 2002, 99, 543–548. [Google Scholar]
- Shin, H.O.; Min, K.H.; Mitchell, D. Confinement of ultra-high-performance fiber reinforced concrete columns. Compos. Struct. 2017, 176, 124–142. [Google Scholar] [CrossRef]
- Pinto, P.E.; Franchin, P. Issues in the Upgrade of Italian Highway Structures. J. Earthq. Eng. 2010, 14, 1221–1252. [Google Scholar] [CrossRef]
- Borzi, B.; Ceresa, P.; Franchin, P.; Noto, F.; Calvi, G.M.; Pinto, P.E. Seismic vulnerability of the Italian roadway bridge stock. Earthq. Spectra. 2015, 31, 2137–2161. [Google Scholar] [CrossRef]
- Di Sarno, L.; Del Vecchio, C.; Maddaloni, G.; Prota, A. Experimental response of an existing RC bridge with smooth bars and preliminary numerical simulations. Eng. Struct. 2017, 136, 355–368. [Google Scholar] [CrossRef]
- Schramm, N.; Fischer, O. Investigations on the shear behavior of bridge girders made of normal and ultra-high performance fiber-reinforced concrete. Procedia Eng. 2016, 156, 411–418. [Google Scholar] [CrossRef]
- Brühwiler, E. Design and Construction of Steel Fiber-Reinforced UHPC/RC Composite Members; School of Engineering & Architecture: Fribourg, Switzerland, 2011; pp. 121–136. [Google Scholar]
- Li, Y.; Li, J.Q. Relationship between fracture area and tensile strength of cement paste with supplementary cementitious materials. Constr. Build. Mater. 2015, 79, 223–228. [Google Scholar] [CrossRef]
- Peng, G.F.; Yang, J. Residual mechanical properties and explosive spalling of ultra-high-strength concrete exposed to high temperature. J. Harbin Inst. Technol. 2017, 24, 62–70. [Google Scholar]
- Mansur, M.A.; Ong, K.C.G.; Paramasivam, P. Shear strength of fibrous concrete beams without stirrups. J. Struct. Eng. 1986, 112, 2066–2079. [Google Scholar] [CrossRef]
- Fehling, E.; Schmidt, M.; Walraven, J.; Leutbecher, T.; Fröhlich, S. Ultra-High Performance Concrete UHPC: Fundamentals, Design, Examples; John Wiley & Sons: Berlin, Germany, 2014. [Google Scholar]
- Gustafsson, J.; Noghabai, K. Steel Fibers as Shear Reinforcement in High Strength Concrete Beams; Nordic Concrete Research Publications, Nordic Concrete Federation: Oslo, Norway, 1999; pp. 35–52. [Google Scholar]
- Lee, J.-K. Bonding behavior of lap-spliced reinforcing bars embedded in ultra-high strength concrete with steel fibers. KSCE J. Civ. Eng. 2016, 20, 273–281. [Google Scholar] [CrossRef]
- Thiemicke, J.; Fehling, E. Proposed model to predict the shear bearing capacity of UHPC-beams with combined reinforcement. In Proceedings of the HiPerMat 4th International Symposium on Ultrahigh Performance Concrete and High Performance Construction Materials, Kassel, Germany, 9–11 March 2016; Kassel University Press: Kassel, Germany, 2016. [Google Scholar]
- Fehling, E.; Bunje, K.; Leutbecher, T. Bemessung für Biegung und Querkraft bei Bauteilen aus UHFB. In Ultrahochfester Beton; Bauwerk Verlag: Berlin, Germany, 2003; pp. 183–198. [Google Scholar]
- Del Zoppo, M.; Di Ludovico, M.; Balsamo, A.; Prota, A. Comparative analysis of existing RC columns jacketed with CFRP or FRCC. Polymers 2018, 10, 361. [Google Scholar] [CrossRef]
- Del Vecchio, C.; Di Ludovico, M.; Balsamo, A.; Prota, A.; Cosenza, E. Experimental response and fiber-reinforced cement composites strengthening of real reinforced concrete columns with poor-quality concrete. Struct. Concr. 2019, 1–14. [Google Scholar] [CrossRef]
- Del Zoppo, M.; Di Ludovico, M.; Balsamo, A.; Prota, A. Response of RC columns strengthened with composite materials. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Chen, Q. Influence of High Temperature in Explosive Spalling Behavior and Mechanical Properties of Reactive Powder Concrete. Master Thesis, Beijing Jiaotong University, Beijing, China, 2010. [Google Scholar]
- Sun, B.; Lin, Z. Investigation on spalling resistance of ultra-high-strength concrete under rapid heating and rapid cooling. Case Stud. Const. Mater. 2016, 4, 146–153. [Google Scholar] [Green Version]
- Peng, G.F. Effect of steel fiber on explosive spalling and permeability of high performance concrete after exposure to high temperature. In Proceedings of the 6th International Conference on Concrete under Severe Conditions (Environment and Loading), Merida Yucatan, Mexico, 7–9 June 2010; pp. 1029–1035. [Google Scholar]
- Chen, B. Residual strength of hybrid fiber reinforced high-strength concrete after exposure to high temperature. Cem. Concr. Res. 2004, 34, 1065–1069. [Google Scholar] [CrossRef]
- Qin, X.L. Experimental research of compressive strength of reactive powder concrete with steel fiber at elevated temperature. New Build. Mater. 2015, 42, 40–43. [Google Scholar]
- Liu, H.B.; Li, K.L.; Ju, Y.; Wang, H.J.; Tian, K.P.; Wei, S. Explosive spalling of steel fiber reinforced reactive powder concrete subject to high temperature. Concrete. 2010, 8, 6–8. [Google Scholar]
- Klingsch, E.W.; Frangi, A.; Fontana, M. High-And Ultrahigh Performance Concrete: A Systematic Experimental Analysis on Spalling; ACI Special Publication, American Concrete Institute: Farmington Hills, MI, USA, 2011; Volume 9, pp. 1–50. [Google Scholar]
- GB/T 50081—2002, Standard for test method of mechanical properties on ordinary concrete. Chinese National Standard: Beijing, China, 2003.
- RILEM, FMC1. Determination of the Fracture Energy of Mortar and Concrete by Means of Three-Point Bend Tests on Notched Beams, RILEM Technical Recommendations for the Testing and Use of Construction Materials; E and FN SPON: London, UK, 1994; pp. 99–101. [Google Scholar]
- Peng, G.F.; Yang, W.W.; Zhao, J. Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures. Cem. Concr. Res. 2006, 36, 723–727. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R. Development of eco-efficient and cost-effective self-consolidation concretes reinforced with hybrid industrial/recycled steel fibers. Constr. Build. Mater. 2018, 166, 214–226. [Google Scholar] [CrossRef]
- Yazıcı, S.; Arel, H.S. The effect of steel fiber on the bond between concrete and deformed steel bar in SFRCs. Constr. Build. Mater. 2013, 40, 299–305. [Google Scholar] [CrossRef]
- Yazıcı, S.; Inan, G.; Tabak, V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 2007, 21, 1250–1253. [Google Scholar] [CrossRef]
- Sahin, Y.; Köksal, F. The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. 2011, 25, 1801–1806. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R.; Abdollahnejad, Z.; Illilainen, M. Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers. Compos. Part B. 2018, 151, 186–200. [Google Scholar] [CrossRef]
- Aiello, M.A.; Leuzzi, F.; Centonze, G.; Maffezzoli, A. Use of steel fibers recovered from waste tires as reinforcement in concrete: Pull-out behavior, compressive and flexural strength. Waste Manag. 2009, 29, 960–1970. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.C.; Zhang, J.H.; Chen, G.M.; Chen, G.M.; Xie, Z.H. Compressive behavior of concrete structures incorporating recycled concrete aggregates, rubber crumb and reinforced with steel fiber, subjected to elevated temperatures. J. Clean. Prod. 2014, 72, 193–203. [Google Scholar] [CrossRef]
- Peng, G.F.; Yang, J.; Shi, Y.X.; Niu, X.J.; Zhao, Y.L.; Shang, Y.J. Explosive spalling resistance of ultra-high performance concrete. J. Build. Mater. 2017, 20, 229–233, 238. [Google Scholar]
Type | Industrial Steel Fibers | Recycled Steel Fibers1 | |||
---|---|---|---|---|---|
SF1 | SF2 | SF3 | RSF | RSFR | |
Shape | Hooked-end | Hooked-end | Hooked-end | Corrugated | Corrugated |
Nominal length (mm) | 35 | 35 | 30 | 40 | 40 |
Nominal diameter (mm) | 0.55 | 1 | 1 | 1 | 1.1 |
Aspect ratio | 64 | 35 | 30 | 40 | 40 |
Tensile strength (MPa) | 1100 | 900 | 1800–2000 | >1250 | 1800–2000 |
Type | W/B | Binders | Artificial Sand | Coarse Aggregate | Steel Fiber | Super-Plasticizer | ||
---|---|---|---|---|---|---|---|---|
C | SF* | Type | Content | |||||
Plain/UHPC | 0.18 | 810 | 90 | 620 | 930 | — | 0 | 7.2 |
SF1/UHPC | 0.18 | 810 | 90 | 620 | 930 | SF1 | 30 | 10.8 |
SF2/UHPC | 0.18 | 810 | 90 | 620 | 930 | SF2 | 30 | 10.8 |
SF3/UHPC | 0.18 | 810 | 90 | 620 | 930 | SF3 | 30 | 10.8 |
RSF/UHPC | 0.18 | 810 | 90 | 620 | 930 | RSF | 30 | 12.6 |
RSFR/UHPC | 0.18 | 810 | 90 | 620 | 930 | RSFR | 30 | 13.5 |
Fiber | SF1 | SF2 | SF3 | RSF | RSFR |
---|---|---|---|---|---|
Ruptured fiber | 49 | 26 | 10 | 13 | 10 |
Pulled-out fiber | 40 | 10 | 17 | 20 | 22 |
Type | Plain/UHPC | SF1/UHPC | SF2/UHPC | SF3/UHPC | RSF/UHPC | RSFR/UHPC |
---|---|---|---|---|---|---|
Number of spalled specimens | 6(6)1 | 3(6) | 5(6) | 5(6) | 3(6) | 3(6) |
Average spalling depth (mm) | 92 | 12 | 82 | 76 | 27 | 36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Peng, G.-F.; Shui, G.-S.; Zhang, G. Mechanical Properties and Anti-Spalling Behavior of Ultra-High Performance Concrete with Recycled and Industrial Steel Fibers. Materials 2019, 12, 783. https://doi.org/10.3390/ma12050783
Yang J, Peng G-F, Shui G-S, Zhang G. Mechanical Properties and Anti-Spalling Behavior of Ultra-High Performance Concrete with Recycled and Industrial Steel Fibers. Materials. 2019; 12(5):783. https://doi.org/10.3390/ma12050783
Chicago/Turabian StyleYang, Juan, Gai-Fei Peng, Guo-Shuang Shui, and Gui Zhang. 2019. "Mechanical Properties and Anti-Spalling Behavior of Ultra-High Performance Concrete with Recycled and Industrial Steel Fibers" Materials 12, no. 5: 783. https://doi.org/10.3390/ma12050783
APA StyleYang, J., Peng, G. -F., Shui, G. -S., & Zhang, G. (2019). Mechanical Properties and Anti-Spalling Behavior of Ultra-High Performance Concrete with Recycled and Industrial Steel Fibers. Materials, 12(5), 783. https://doi.org/10.3390/ma12050783