Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Sn-Decorated RGO
2.2. Preparation of the Sn-Decorated RGO Anode Tape
2.3. Preparation of the Cathode Active Material
2.4. Preparation of the Cathode Tape
2.5. Chemical–Physical Characterization
2.6. Electrochemical Characterization
3. Results and Discussion
3.1. Chemical–Physical Characterization of the Sn-Decorated RGO
3.2. Chemical–Physical Characterization of the Na1.0Li0.2Ni0.25Mn0.75Oδ
3.3. Electrochemical Characterization of the Sn-Decorated RGO Electrode
3.4. Electrochemical Characterization of the Cathode
3.5. Electrochemical Characterization of the SIB
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vine, J.D. Where on Earth Was All the Lithium; Open-File Report 80-1234; United States Department of the Interior Geological Survey: Reston, VA, USA, 1980. [Google Scholar]
- Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901. [Google Scholar] [CrossRef]
- Sudworth, J.L.; Tilley, A.R. The Sodium Sulphur Battery; Chapman & Hall: London, UK, 1985. [Google Scholar]
- Braconnier, J.J.; Delmas, C.; Hagenmuller, P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2. Mater. Res. Bull. 1982, 17, 993–1000. [Google Scholar] [CrossRef]
- Mendiboure, A.; Delmas, C.; Hagenmuller, P.J. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Solid State Chem. 1985, 57, 323–331. [Google Scholar] [CrossRef]
- Reddy, B.V.R.; Ravikumar, R.; Nithya, C.; Gopukumar, S. High performance NaxCoO2 as a cathode material for rechargeable sodium batteries. J. Mater. Chem. A 2015, 3, 18059–18063. [Google Scholar] [CrossRef]
- Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74–80. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Yoshida, H.; Komaba, S. Crystal structures and electrode performance of Alpha-NaFeO2 for rechargeable sodium batteries. Electrochemistry 2012, 80, 716–719. [Google Scholar] [CrossRef]
- Maazaz, A.; Delmas, C.; Hagenmuller, P. A study of the NaxTiO2 system by electrochemical deintercalation. J. Incl. Phenom. 1983, 1, 45–51. [Google Scholar] [CrossRef]
- Tarascon, J.M.; Hull, G.W. Sodium intercalation into the layer oxides NaxMo2O4. Solid State Ion. 1986, 22, 85–96. [Google Scholar] [CrossRef]
- Von Nghia, V.; Ou, W.-P.; Hung, I.-M. Synthesis and electrochemical performances of layered NaLi0.2Ni0.2Mn0.6O2 cathode for sodium-ion batteries. Ceram. Int. 2015, 41, 10199–10207. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, J.; Tang, Y.; Bi, Y.; Wang, C.; Wang, D.; Shi, S. Synthesis of Na2FePO4F/C and its electrochemical performance. Ceram. Int. 2013, 39, 5379–5385. [Google Scholar] [CrossRef]
- Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K. Reversible NaFePO4 electrode for sodium secondary batteries. Electrochem. Commun. 2012, 22, 149–152. [Google Scholar] [CrossRef]
- Liu, J.; Tang, K.; Song, K.; Van Aken, P.A.; Yu, Y.; Maier, J. Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 2014, 6, 5081–5086. [Google Scholar] [CrossRef] [PubMed]
- Gover, R.K.B.; Bryan, A.; Burns, P.; Barker, J. The electrochemical insertion properties of sodium vanadium fluorophosphate Na3V2(PO4)2F3. Solid State Ion. 2006, 177, 1495–1500. [Google Scholar]
- Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J.B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Yu, X.; Yin, Y.; Nam, K.-W.; Guo, Y.-G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128. [Google Scholar] [CrossRef]
- Yu, S.-H.; Shokouhimehr, M.; Hyeon, T.; Sung, Y.-E. Metal hexacyanoferrate nanoparticles as electrode materials for lithium ion batteries. ECS Electrochem. Lett. 2013, 2, A39–A41. [Google Scholar] [CrossRef]
- Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J.B. A superior low-cost cathode for a Na-Ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964–1967. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.A.; Dahn, J.R. The mechanisms of lithium and sodium insertion in carbon materials. J. Electrochem. Soc. 2001, 148, A803–A811. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef]
- Doeff, M.M.; Ma, Y.P.; Visco, S.J.; Dejonghe, L.C.J. Electrochemical insertion of sodium into carbon. Electrochem. Soc. 1993, 140, L169–L170. [Google Scholar] [CrossRef]
- Stevens, D.A.; Dahn, J.R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271–1273. [Google Scholar] [CrossRef]
- Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. 2014, 126, 10333–10373. [Google Scholar] [CrossRef]
- Delmas, C.; Cherkaoui, F.; Nadiri, A.; Hagenmuller, P. A nasicon-type phase as intercalation electrode: NaTi2(PO4)3. Mater. Res. Bull. 1987, 22, 631–639. [Google Scholar] [CrossRef]
- Xu, Y.; Lotfabad, E.M.; Wang, H.; Farbod, B.; Xu, Z.W.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: A new anode material for rechargeable sodium ion batteries. Chem. Commun. 2013, 49, 8973–8975. [Google Scholar] [CrossRef] [PubMed]
- Baggetto, L.; Ganesh, P.; Meisner, R.P.; Unocic, R.R.; Jumas, J.C.; Bridges, C.A.; Veith, G.M. Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory. J. Power Sources 2013, 234, 48–59. [Google Scholar] [CrossRef]
- Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. Chem. Commun. 2012, 48, 7070–7072. [Google Scholar]
- Xiao, L.; Cao, Y.; Xiao, J.; Wang, W.; Kovarik, L.; M. Nie, Z.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321–3323. [Google Scholar] [CrossRef]
- Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell. Electrochem. Commun. 2012, 21, 65–68. [Google Scholar] [CrossRef]
- Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y.S.; Wang, T.; Lee, J.Y. Layered SnS2-reduced graphene oxide composite—A high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Zhou, W.; Chabot, V.; Yu, A.; Xiao, X. Reduced graphene oxide/tin-antimony nanocomposites as anode materials for advanced sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 24895–24901. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, R.; Chen, N.; Meng, X.; Yang, P.; Wang, C.; Zhang, Y.; Wei, Y.; Chen, G.; Du, F. Assembly of SnSe nanoparticles confined in graphene for enhanced sodium-ion storage performance. Chem. Eur. J. 2016, 22, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Z.; Zhang, Z.; Li, C.; Ma, J.; Wang, C.; Ge, X.; Dong, S.; Yin, L. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Lim, Y.-G.; Park, M.-S.; Chou, S.-L.; Kim, J.H.; Liu, H.K.; Dou, S.-X.; Kim, Y.-J. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2014, 2, 529–534. [Google Scholar] [CrossRef]
- Han, H.; Jiang, X.; Chen, X.; Ai, X.; Yang, H.; Cao, Y. SnO2-reduced graphene oxide nanocomposites via microwave route as anode for sodium-ion battery. JOM 2016, 68, 2607–2612. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, J.; Zhang, S.; Zhu, P.; Cao, G.; Zhao, X. Ultrafine tin oxide on reduced graphene oxide as high-performance anode for sodium-ion batteries. Electrochim. Acta 2015, 151, 8–15. [Google Scholar] [CrossRef]
- Prosini, P.P.; Carewska, M.; Tarquini, G.; Maroni, F.; Birrozzi, A.; Nobili, F. A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi0.5Mn1.5O4 cathode. Ionics 2016, 22, 515–528. [Google Scholar] [CrossRef]
- Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J.T.; Karan, N.; Balasubramanian, M.; Johnson, C.S. Enabling sodium batteries using lithium-substituted sodium layered transition metal oxide cathodes. Adv. Energy Mater. 2011, 1, 333–336. [Google Scholar] [CrossRef]
- Yoon, W.-S.; Grey, C.P.; Balasubramanian, M.; Yang, X.Q.; McBreen, J. In situ X-ray absorption spectroscopic study on LiNi0.5Mn0.5O2 cathode material during electrochemical cycling. Chem. Mater. 2003, 15, 3161–3169. [Google Scholar] [CrossRef]
- Kang, K.; Men, Y.S.; Bréger, J.; Grey, C.P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Iannopollo, C.P.; Grey, D.; Carlier, J.; Gorman, J.; Reed, W.S.; Ceder, G. Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2-x)/3Li(1-2x)/3]O2-NMR studies and first principles calculations. Electrochem. Solid State Lett. 2004, 7, A167–A171. [Google Scholar] [CrossRef]
- Birrozzi, A.; Raccichini, R.; Nobili, F.; Marinaro, M.; Tossici, R.; Marassi, R. High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim. Acta 2014, 137, 228–234. [Google Scholar] [CrossRef]
- Kalapsazova, M.L.; Zhecheva, E.N.; Tyuliev, G.T.; Nihtianova, D.D.; Mihaylow, L.; Stoyanova, R.K. Effects of the particle size distribution and of the electrolyte salt on the intercalation properties of P3-Na2/3Ni1/2Mn1/2O2. J. Phys. Chem. C 2017, 121, 5931–5940. [Google Scholar] [CrossRef]
- Maroni, F.; Raccichini, R.; Birrozzi, A.; Carbonari, G.; Tossici, R.; Croce, F.; Marassi, R.; Nobili, F. Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. J. Power Sources 2014, 269, 873–882. [Google Scholar] [CrossRef]
- Risthaus, T.; Zhou, D.; Cao, X.; He, X.; Qiu, B.; Wang, J.M.; Winter, M. A high-capacity P2Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity. J Power Sources 2018, 395, 16–24. [Google Scholar] [CrossRef]
- Meng, J.K.; Wang, W.W.; Wang, Q.C.; Cao, M.H.; Fu, Z.W.; Wu, X.J.; Zhou, Y.N. Graphene supported ultrafine tin oxide nanoparticles enable conversion reaction dominated mechanism for sodium-ion batteries. Electrochim. Acta 2019, 303, 32–39. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage. Carbon 2013, 57, 202–208. [Google Scholar] [CrossRef]
- Munoz-Marquez, M.A.; Saurel, D.; Gomez-Camer, J.L.; Casas-Cabanas, M.; Castillo-Martinez, E.; Rojo, T. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 2017, 7, 1700463. [Google Scholar] [CrossRef]
- Zhou, X.; Guo, Y.-G. Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 2014, 1, 83–86. [Google Scholar] [CrossRef]
- Luo, X.-F.; Yang, C.-H.; Peng, Y.-Y.; Pu, N.-W.; Ger, M.-D.; Hsieh, C.-T.; Chang, J.-K. Graphene nanosheets, carbon nanotubes, graphite, and activated carbon as anode materials for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 10320–10326. [Google Scholar] [CrossRef]
- Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867. [Google Scholar] [CrossRef]
- Li, Z.; Feng, J.; Hu, H.; Dong, Y.; Ren, H.; Wu, W.; Wu, M. An amorphous tin-based nanohybrid for ultra-stable sodium storage. J. Mater Chem. A 2018, 6, 18920–18927. [Google Scholar] [CrossRef]
- Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacin, M.R. No-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. 2015, A3, 22–42. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prosini, P.P.; Carewska, M.; Cento, C.; Tarquini, G.; Maroni, F.; Birrozzi, A.; Nobili, F. Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries. Materials 2019, 12, 1074. https://doi.org/10.3390/ma12071074
Prosini PP, Carewska M, Cento C, Tarquini G, Maroni F, Birrozzi A, Nobili F. Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries. Materials. 2019; 12(7):1074. https://doi.org/10.3390/ma12071074
Chicago/Turabian StyleProsini, Pier Paolo, Maria Carewska, Cinzia Cento, Gabriele Tarquini, Fabio Maroni, Agnese Birrozzi, and Francesco Nobili. 2019. "Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries" Materials 12, no. 7: 1074. https://doi.org/10.3390/ma12071074
APA StyleProsini, P. P., Carewska, M., Cento, C., Tarquini, G., Maroni, F., Birrozzi, A., & Nobili, F. (2019). Tin-Decorated Reduced Graphene Oxide and NaLi0.2Ni0.25Mn0.75Oδ as Electrode Materials for Sodium-Ion Batteries. Materials, 12(7), 1074. https://doi.org/10.3390/ma12071074