Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Prenucleated PbS Quantum Dots
2.3. Characterization
3. Results
3.1. Morphology Analysis of Prenucleated PbS QDs
3.2. Physiochemical Property Analysis
3.3. Growth Mechanism of Prenucleated PbS QDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yan, X.; Cui, X.; Li, L. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945. [Google Scholar] [CrossRef] [PubMed]
- Dabbousi, B.O.; Rodriguez, J.; Mikulec, F.V.; Heine, J.R.; Mattoussi, H.; Ober, R.; Jensen, K.F.; Bawendi, M.G. (CdSe)ZnS core−shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 1997, 101, 9463–9475. [Google Scholar] [CrossRef]
- Grieve, K.; Mulvaney, P.; Grieser, F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr. Opin. Colloid Interface Sci. 2000, 5, 168–172. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, F.; Yin, S.; Wang, Y.; Lin, Z.; Wu, X.; Zhao, Y. Correlation between the photoluminescence and oriented attachment growth mechanism of CdS quantum dots. J. Am. Chem. Soc. 2010, 132, 9528–9530. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.A.; Peng, X. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395. [Google Scholar] [CrossRef]
- Cho, K.S.; Talapin, D.V.; Gaschler, W.; Murray, C.B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, H.; Banfieldt, J.F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 2003, 3, 373–378. [Google Scholar] [CrossRef]
- Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the “oriented attachment” mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949. [Google Scholar] [CrossRef]
- Leite, E.R.; Giraldi, T.R.; Pontes, F.M.; Longo, E.; Beltrán, A.; Andrés, J. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl. Phys. Lett. 2003, 83, 1566–1568. [Google Scholar] [CrossRef]
- Chen, X.L.; Jenekhe, S.A. Block conjugated copolymers: Toward quantum-well nanostructures for exploring spatial confinement effects on electronic, optoelectronic, and optical phenomena. Macromolecules 1996, 29, 6189–6192. [Google Scholar] [CrossRef]
- Wang, Y.; Herron, N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 1991, 95, 525–532. [Google Scholar] [CrossRef]
- Erdemir, D.; Lee, A.Y.; Myerson, A.S. Nucleation of crystals from solution: Classical and two-step models. Acc. Chem. Res. 2009, 42, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 28, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
- Gebauer, D.; Volkel, A.; Colfen, H. Stable prenucleation calcium carbonate clusters. Science 2008, 322, 1819–1822. [Google Scholar] [CrossRef] [PubMed]
- Englund, S.; Paneta, V.; Primetzhofer, D.; Ren, Y.; Donzel-Gargand, O.; Larsen, J.K.; Scragg, J.; Bjorkman, C.P. Characterization of TiN back contact interlayers with varied thickness for Cu2ZnSn(S,Se)4 thin film solar cells. Thin Solid Films 2017, 639, 91–97. [Google Scholar] [CrossRef]
- Usman, M.; Suvanam, S.S.; Linnarsson, M.K.; Hallen, A. Improving the quality of Al2O3/4H-SiC interface for device applications. Mater. Sci. Semicond. Process 2018, 81, 118–121. [Google Scholar] [CrossRef]
- Avila, T.S.; Fichtner, P.F.P.; Hentz, A.; Grande, P.L. On the use of MEIS cartography for the determination of Si1–xGex thin-film strain. Thin Solid Films 2016, 611, 101–106. [Google Scholar] [CrossRef]
- Paes, V.Z.C.; Castegnaro, M.V.; Baptista, D.L.; Grande, P.L.; Morais, J. Unveiling the Inner Structure of PtPd Nanoparticles. J. Phys. Chem. C 2017, 121, 19461–19466. [Google Scholar] [CrossRef]
- Park, J.; Yang, K.D.; Kim, N.-Y.; Jung, K.-W.; Le, V.-D.; Lim, H.-J.; An, J.; Jin, K.; Kim, Y.-H.; Nam, K.T.; et al. Quantitative Analysis of Calcium Phosphate Nanocluster Growth Using Time-of-Flight Medium-Energy-Ion-Scattering Spectroscopy. ACS Cent. Sci. 2018, 4, 1253–1260. [Google Scholar] [CrossRef]
- Hinds, S.; Myrskog, S.; Levina, L.; Koleilat, G.; Yang, J.; Kelley, S.O.; Sargent, E.H. NIR-Emitting Colloidal Quantum Dots Having 26% Luminescence Quantum Yield in buffer Solution. J. Am. Chem. Soc. 2007, 129, 7218–7219. [Google Scholar] [CrossRef]
- Seo, J.; Cho, M.J.; Lee, D.; Cartwright, A.N.; Prasad, P.N. Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a low-bandgap polymer. Adv. Mater. 2011, 23, 3984–3988. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Q. PbS quantum dots capped with amorphous ZnS for bulk heterojunction solar cells: The solvent effect. ACS Appl. Mater. Interfaces 2014, 6, 14239–14246. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Koh, Z.Y.; Wang, Q. PbS quantum dots embedded in a ZnS dielectric matrix for bulk heterojunction solar cell applications. Adv. Mater. 2013, 25, 4598–4604. [Google Scholar] [CrossRef] [PubMed]
- Wise, F.W. Lead salt quantum dots: The Limit of strong quantum confinement. Acc. Chem. Res. 2000, 33, 773–780. [Google Scholar] [CrossRef]
- Yue, Z.R.; Jiang, W.; Wang, L.; Gardner, S.D.; Pittman, C.U., Jr. Surface characterization of electrochemically oxidized carbon fibers. Carbon 1999, 37, 1785–1796. [Google Scholar] [CrossRef]
- Xie, Y.; Sherwood, P.M.A. X-ray photoelectron-spectroscopic studies of carbon fiber surfaces. 11. Differences in the surface chemistry and bulk structure of different carbon fibers based on poly(acrylonitrile) and pitch and comparison with various graphite samples. Chem. Mater. 1990, 2, 293–299. [Google Scholar] [CrossRef]
- Wilcoxon, J.P.; Martin, J.E.; Provencio, P. Optical properties of gold and silver nanoclusters investigated by liquid chromatography. J. Chem. Phys. 2001, 115, 998–1008. [Google Scholar] [CrossRef]
- Pennycook, T.J.; McBride, J.R.; Rosenthal, S.J.; Pennycook, S.J.; Pantelides, S.T. Dynamic fluctuations in ultrasmall nanocrystals induce white light emission. Nano Lett. 2012, 12, 3038–3042. [Google Scholar] [CrossRef]
- Ma, W.; Swisher, S.L.; Ewers, T.; Engel, J.H.; Ferry, V.E.; Atwater, H.A.; Alivisatos, A.P. Photovoltaic performance of ultrasmall PbSe quantum dots. ACS Nano 2011, 5, 8140–8147. [Google Scholar] [CrossRef]
- Choi, H.; Ko, J.; Kim, Y.; Jeong, S. Steric-hindrance-driven shape transition in PbS quantum dots: Understanding size-dependent stability. J. Am. Chem. Soc. 2013, 135, 5278–5281. [Google Scholar] [CrossRef]
- Yao, H.; Saeki, M.; Kimura, K. Induced optical activity in boronic-acid-protected silver nanoclusters by complexation with chiral fructose. J. Phys. Chem. C 2010, 114, 15909–15915. [Google Scholar] [CrossRef]
- Kim, B.H.; Hackett, M.J.; Park, J.; Hyeon, T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater. 2014, 26, 59–71. [Google Scholar] [CrossRef]
- Konomi, I.; Hyodo, S.; Motohiro, T. Simulation of MEIS spectra for quantitative understanding of average size, composition, and size distribution of Pt-Rh alloy nanoparticles. J. Catal. 2000, 192, 11–17. [Google Scholar] [CrossRef]
- Sortica, M.A.; Grande, P.L.; Radtke, C.; Almeida, L.G.; Debastiani, R.; Dias, J.F.; Hentz, A. Structural characterization of CdSe/ZnS quantum dots using medium energy ion scattering. Appl. Phys. Lett. 2012, 101, 023110. [Google Scholar] [CrossRef] [Green Version]
- Okazawa, T.; Fujiwara, M.; Nishimura, T.; Akita, T.; Kohyama, M.; Kido, Y. Growth mode and electronic structure of Au nano-clusters on NiO(001) and TiO2(110). Surf. Sci. 2006, 600, 1331–1338. [Google Scholar] [CrossRef]
- Quinn, P.D.; Wilson, N.R.; Hatfield, S.A.; McConville, C.F.; Bell, G.R.; Noakes, T.C.Q.; Bailey, P.; Al-Harthi, S.; Gard, F. Composition profiles of InAs–GaAs quantum dots determined by medium-energy ion scattering. Appl. Phys. Lett. 2005, 87, 153110. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, H.; Mitsuhara, K.; Visikovskiy, A.; Akita, T.; Toshima, N.; Kido, Y. Au(core)/Pd(shell) structures analyzed by high-resolution medium energy ion scattering. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 2010, 268, 2281–2284. [Google Scholar] [CrossRef] [Green Version]
- Jung, K.-W.; Yu, H.; Min, W.J.; Yu, K.-S.; Sortica, M.A.; Grande, P.L.; Moon, D.W. Quantitative Compositional Profiling of Conjugated Quantum Dots with Single Atomic Layer Depth Resolution via Time-of-Flight Medium-Energy Ion Scattering Spectroscopy. Anal. Chem. 2014, 84, 1091–1097. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, J.; Haire, A.R.; Baddeley, C.J. Depth-profiling the composition of bimetallic nanoparticles using medium energy ion scattering. Surf. Sci. 2011, 605, 220–224. [Google Scholar] [CrossRef]
- Haire, A.R.; Gustafson, J.; Trant, A.G.; Jones, T.E.; Noakes, T.C.Q.; Bailey, P.; Baddeley, C.J. Alloy formation in the Co/Pd{111} system - A study with medium energy ion scattering and scanning tunnelling microscopy. Surf. Sci. 2011, 605, 214–219. [Google Scholar] [CrossRef]
- Wood, T.J.; Eames, C.; Bonet, C.; Reakes, M.B.; Noakes, T.C.Q.; Bailey, P.; Tear, S.P. Medium-energy ion-scattering study of strained holmium silicide nanoislands grown on silicon (100). Phys. Rev. B 2008, 78, 035423. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, H.; Ma, D.; Vomiero, A.; Rosei, F. Dynamics of semiconducting nanocrystal uptake into mesoporous TiO2 thick films by electrophoretic deposition. J. Mater. Chem. A 2015, 3, 847–856. [Google Scholar] [CrossRef]
- Barkoula, N.M.; Alcock, B.; Cabrera, N.O.; Peijs, T. Fatigue properties of highly oriented polypropylene tapes and all-polypropylene composites. Polym. Polym. Compos. 2008, 16, 101–113. [Google Scholar] [CrossRef]
- Ratanatawanate, C.; Xiong, C.; Balkus, K.J. Fabrication of PbS quantum Dot doped TiO2 nanotubes. ACS Nano 2008, 2, 1682–1688. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S. Preparation and characterization of oriented PbS crystalline nanorods in polymer films. Langmuir 2000, 16, 389–397. [Google Scholar] [CrossRef]
- Reilly, N.; Wehrung, M.; O’Dell, R.A.; Sun, L. Ultrasmall colloidal PbS quantum dots. Mater. Chem. Phys. 2014, 147, 1–4. [Google Scholar] [CrossRef]
- Lignos, I.; Stavrakis, S.; Kilaj, A.; deMello, A.J. Millisecond-timescale monitoring of PbS nanoparticle nucleation and growth using droplet-based microfluidics. Small 2015, 11, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Binetti, E.; Striccoli, M.; Sibillano, T.; Giannini, C.; Brescia, R.; Falqui, A.; Comparelli, R.; Corricelli, M.; Tommasi, R.; Agostiano, A.; et al. Tuning light emission of PbS nanocrystals from infrared to visible range by cation exchange. Sci. Technol. Adv. Mater. 2015, 16, 055007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, J.; Dey, A.; Bomans, P.H.H.; Le Coadou, C.; Fratzl, P.; Sommerdijk, N.A.J.M.; Faivre, D. Nucleation and growth of magnetite from solution. Nat. Mater. 2013, 12, 310–314. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.H.; Park, S.M.; Jung, K.-W.; Hwang, Y.; Sorcar, S.; Moon, D.W.; In, S.-I. Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy. Materials 2019, 12, 1109. https://doi.org/10.3390/ma12071109
Park YH, Park SM, Jung K-W, Hwang Y, Sorcar S, Moon DW, In S-I. Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy. Materials. 2019; 12(7):1109. https://doi.org/10.3390/ma12071109
Chicago/Turabian StylePark, Young Ho, Seung Min Park, Kang-Won Jung, Yunju Hwang, Saurav Sorcar, Dae Woon Moon, and Su-Il In. 2019. "Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy" Materials 12, no. 7: 1109. https://doi.org/10.3390/ma12071109
APA StylePark, Y. H., Park, S. M., Jung, K. -W., Hwang, Y., Sorcar, S., Moon, D. W., & In, S. -I. (2019). Synthesis and Growth Mechanism of Stable Prenucleated (≈0.8 nm Diameter) PbS Quantum Dots by Medium Energy Ion Scattering Spectroscopy. Materials, 12(7), 1109. https://doi.org/10.3390/ma12071109