On the Thickness Quantification of Composite Materials by Using Lock-In Thermography
Abstract
:1. Introduction
2. Theory
3. Material and Methods
3.1. Material and Experimental Set-Up
3.2. Proposed Procedure
4. Results and Discussion
- Firstly, if the material constants are known, the 1-D model can be used for estimating the correct periods in terms of the phase and first derivative of the phase. This latter provides information about the period for which the phase signal has the maximum sensitivity. To obtain a better accuracy in evaluation of the best period, diffusivity and effusivity of material can be retrieved from a sample specimen by means of experimental tests.
- Evaluating the noise of the technique by considering the Standard Deviation of the phase signal on a sample specimen.
- Estimating the sensitivity of technique by fixing a threshold value equal to two or three time the value of SD.
- Estimating the thickness variations that can be measured by the phase data.
- Verifying the thickness or thickness variations by means of the phase signal by adopting the best period.
5. Conclusions
- the possibility to estimate the resolution in thickness measurement variation as a function of the thickness by using a 1-D model,
- the accuracy (in period evaluation) of the proposed method depends on the hypothesis of the 1-D theoretical model,
- proposed approach can be a useful tool in the case of a sample specimen is not available. The first derivative analysis and then the best period can be obtained by estimating the thermo-physical constants on the same component under analysis since the nominal thicknesses are known.
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, P.; Huang, P.; Ye, B.; Li, G.; Zhou, Z. Thickness Measurement of Composite Material using Eddy current Testing. Adv. Mater. Res. 2009, 79, 1995–1998. [Google Scholar] [CrossRef]
- Amiri, M.M.; Ghomi, M.T.; Liaghat, G.H. Reliability and limitations of Impact-Echo Method for Thickness Measurement of Orthotropic Composite Plates. Int. J. Adv. Manuf. Technol. 2018, 11, 71–78. [Google Scholar]
- Zhang, Y.J.; Wu, J.L. Research on measurement of thickness and damage degree of coatings based on lock-in thermography. In Proceedings of the IOP Conference Ser 1st International Global on Renewable Energy and Development (IGRED), Singapore, 22–25 December 2017. [Google Scholar] [CrossRef]
- Moreno, E.; Acevedo, P.; Castillo, M. Thickness measurement in composite materials using lamb waves Viscoelastic effects. Ultrasonic 2000, 37, 595–599. [Google Scholar] [CrossRef]
- Moreno, E.; Acevedo, P. Thickness measurement in composite materials using Lamb waves. Ultrasonic 1998, 35, 581–586. [Google Scholar] [CrossRef]
- Maldague, X.P.V. Theory and Practice of Infrared Technology of Non-Destructive Testing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; ISBN 0-471-18190-0. [Google Scholar]
- Shepard, S.S.; Hou, Y.L.; Lhota, J.R.; Wand, D.; Ahmed, T. Thermographic measurement of thermal barrier coating thickness. Proc. SPIE 2005, 5782, 407–410. [Google Scholar]
- Shepard, S.S.; Lhota, J.R.; Wand, D.; Ahmed, T. Measurement limits in flash thermography. Proc. SPIE 2009, 7299. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, C.; Tao, N.; Feng, L.; Zhang, C. Depth prediction of non-air interface defect using pulsed thermography. NDT & E Int. 2012, 48, 39–45. [Google Scholar]
- D’Accardi, E.; Palano, F.; Tamborrino, R.; Palumbo, D.; Tatì, A.; Terzi, R.; Galietti, U. Pulse Phase Thermography Approach for the Characterization of Delaminations in CFRP and Comparison to Phased Array Ultrasonic Testing. J. Nondestruct. Eval. 2019, 38, 20. [Google Scholar] [CrossRef]
- Marani, R.; Palumbo, D.; Renò, V.; Galietti, U.; Stella, E.; D’Orazio, T. Modeling and classification of defects in CFRP laminates by thermal non-destructive testing. Compos. Part B-Eng. 2018, 135, 129–141. [Google Scholar] [CrossRef]
- Palumbo, D.; Galietti, U. Damage investigation in composite materials by means of new thermal data processing procedures. Strain 2016, 52, 276–285. [Google Scholar] [CrossRef]
- Palumbo, D.; De Finis, R.; Demelio, G.P.; Galietti, U. Study of damage evolution in composite materials based on the Thermoelastic Phase Analysis (TPA) method. Compos. Part B-Eng. 2017, 117, 49–60. [Google Scholar] [CrossRef]
- Ekanayake, S.; Gurram, S.; Schmitt, R.H. Depth determination of defects in CFRP-structures using lock-in thermography. Compos. Part B-Eng. 2018, 147, 128–134. [Google Scholar] [CrossRef]
- Delanthabettu, S.; Menaka, M.; Venkatraman, B.; Raj, B. Defect depth quantification using lock-in thermography. Quant. InfraRed Therm. J. 2015, 12, 37–52. [Google Scholar] [CrossRef]
- Chatterjee, K.; Tuli, S. Prediction of blind frequency in lock-in thermography using electro-thermal model based numerical simulation. J. Appl. Phys. 2013, 114, 174905. [Google Scholar] [CrossRef]
- Maierhofer, C.; Myrach, P.; Krankenhagen, R.; Röllig, M.; Steinfurth, H. Detection and Characterization of Defects in Isotropic and Anisotropic Structures Using Lockin Thermography. J. Imaging 2015, 1, 220–248. [Google Scholar] [CrossRef] [Green Version]
- Subhani, S.K.; Suresh, V.S.; Ghali, V.S. Quantitative subsurface analysis using frequency modulated thermal wave imaging. Infrared Phys. Technol. 2018, 88, 41–47. [Google Scholar] [CrossRef]
- Wallbrink, C.; Wade, S.A.; Jones, R. The effect of size on the quantitative estimation of effect depth in steel structures using lock-in thermography. J. Appl. Phys. 2007, 101, 104907. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Meng, X.B.; Ma, Y.C. A new measurement method of coatings thickness based on lock-in thermography. Infrared Phys. Technol. 2016, 76, 655–660. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography—Part I: Simulation. Infrared Phys. Technol. 2017, 83, 124–131. [Google Scholar] [CrossRef]
- Shrestha, R.; Kim, W. Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography—Part II: Experimental investigation. Infrared Phys. Technol. 2018, 92, 24–29. [Google Scholar] [CrossRef]
- Rosencwaig, A.; Gersho, A. Theory of the photoacoustic effect with solids. J. Appl. Phys. 1976, 64, 64–69. [Google Scholar] [CrossRef]
- Bennett, C.A., Jr.; Patty, R.R. Thermal wave interferometry: A potential application of the photoacoustic effect. Appl. Opt. 1982, 21, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Quek, S.; Almond, D.; Nelson, L.; Barden, T. A novel and robust thermal wave signal reconstruction technique for defect detection in lock-in thermography. Meas. Sci. Technol. 2005, 16, 1223–1233. [Google Scholar] [CrossRef]
- IRTA Manual. Diagnostic Engineering Solutions (DES srl); Des srl: Bari, Italy, 2015. [Google Scholar]
k (W/m K) | ρ (kg/m3) | cp (J/kg K) | α (m2/s) × 10−7 | R1 = R2 | h (m) × 10−3 | T (s) |
---|---|---|---|---|---|---|
0.3 | 1900 | 1200 | 1.3 | 0.99 | 0.5–5 (step 0.5) | 10–490 (step 10) |
Test Number | Modulation Period (s) | Modulation Frequency (Hz) | Heat Source | Number of Cycles | Harmonics | |
---|---|---|---|---|---|---|
1 | 48 | 0.021 | square | 3 | 0.021; 0.062; 0.105 (Hz) | 48; 16; 9.6 (s) |
2 | 72 | 0.014 | square | 3 | 0.014; 0.042; 0.069 (Hz) | 72; 24; 14.4 (s) |
3 | 80 | 0.013 | square | 3 | 0.013; 0.038; 0.063 (Hz) | 80; 26.7; 16 (s) |
4 | 120 | 0.008 | square | 3 | 0.008; 0.025; 0.042 (Hz) | 120; 40; 24 (s) |
5 | 240 | 0.004 | square | 3 | 0.004; 0.013; 0.021 (Hz) | 240; 80; 48 (s) |
6 | 360 | 0.003 | square | 3 | 0.003; 0.008; 0.014 (Hz) | 360; 120; 72 (s) |
7 | 450 | 0.002 | square | 3 | 0.002; 0.007; 0.011 (Hz) | 450; 150; 90 (s) |
Test Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Frame rate (frame/s) | 3 | 2 | 2 | 1 | 1 | 1 | 1 |
Total frames (3 cycles) | 432 | 432 | 480 | 720 | 720 | 1080 | 1350 |
Step | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Thickness (mm) | 0.6 | 1.6 | 3.5 | 5.8 | 7.9 | 9.8 | 11.80 | 13.50 | 16.2 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palumbo, D. On the Thickness Quantification of Composite Materials by Using Lock-In Thermography. Materials 2019, 12, 1185. https://doi.org/10.3390/ma12071185
Palumbo D. On the Thickness Quantification of Composite Materials by Using Lock-In Thermography. Materials. 2019; 12(7):1185. https://doi.org/10.3390/ma12071185
Chicago/Turabian StylePalumbo, Davide. 2019. "On the Thickness Quantification of Composite Materials by Using Lock-In Thermography" Materials 12, no. 7: 1185. https://doi.org/10.3390/ma12071185
APA StylePalumbo, D. (2019). On the Thickness Quantification of Composite Materials by Using Lock-In Thermography. Materials, 12(7), 1185. https://doi.org/10.3390/ma12071185