A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bilayer Selective Emitter
2.2. Characterization Methods
3. Results
3.1. The Structure of the Bilayer Selective Emitter
3.2. Optical Characteristic
3.3. Cooling Performance Evaluation
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Buildings Energy Data Book. Available online: http://buildingsdatabook.eren.doe.gov/docs/DataBooks/2011_BEDB.pdf (accessed on 24 March 2011).
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Safi, T.S.; Munday, J.N. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments. Opt. Express 2015, 23, A1120–A1128. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Su, J. Improved lumped models for transient combined convective and radiative cooling of multi-layer composite slabs. Appl. Therm. Eng. 2011, 31, 2508–2517. [Google Scholar] [CrossRef]
- Hossain, M.M.; Jia, B.; Gu, M. Metamaterials: A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 2015, 3, 980. [Google Scholar] [CrossRef]
- Zou, C.; Ren, G.; Hossain, M.M.; Nirantar, S.; Withayachumnankul, W.; Ahmed, T.; Bhaskaran, M.; Sriram, S.; Gu, M.; Fumeaux, C. Metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 2017, 5, 1700460. [Google Scholar] [CrossRef]
- Scowcroft, P.G.; Meinzer, F.C.; Goldstein, G.; Melcher, P.J.; Jeffrey, J. Moderating night radiative cooling reduces frost damage to Metrosideros polymorpha seedlings used for forest restoration in Hawaii. Restor. Ecol. 2010, 8, 161–169. [Google Scholar] [CrossRef]
- Sohel, M.I.; Ma, Z.; Cooper, P.; Adams, J.; Niccol, L.; Gschwander, S. A feasibility study of night radiative cooling of BIPVT in climatic conditions of major Australian cities. In Proceedings of the Asia-Pacific Solar Research Conference, Sydney, Australia, 8–10 December 2014. [Google Scholar]
- Tsoy, A.P.; Granovskiy, A.S.; Baranenko, A.V.; Tsoy, D.A. Effectiveness of a Night Radiative Cooling System in Different Geographical Latitudes; American Institute of Physics Conference Series; American Institute of Physics: Melville, NY, USA, 2017; p. 020060. [Google Scholar]
- Hossain, M.M.; Gu, M. Radiative cooling: Principles, progress, and potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Rephaeli, E.; Raman, A.; Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013, 13, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C.Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Surfaces for radiative cooling: Silicon monoxide films on aluminum. Appl. Phys. Lett. 1980, 36, 139–141. [Google Scholar] [CrossRef]
- Gentle, A.R.; Smith, G.B. Angular selectivity: Impact on optimised coatings for night sky radiative cooling. Proc. SPIE Int. Soc. Opt. Eng. 2009, 7404, 501–505. [Google Scholar]
- Sakthisabarimoorthi, A.; Dhas, S.A.M.B.; Jose, M. Fabrication and nonlinear optical investigations of SiO2 @Ag core-shell nanoparticles. Mater. Sci. Semicond. Process. 2017, 71, 69–75. [Google Scholar] [CrossRef]
- Vidya, S.; Solomon, S.; Thomas, J.K. Synthesis, sintering and optical properties of CaMoO4: A promising scheelite LTCC and photoluminescent material. Phys. Status Solidi 2012, 209, 1067–1074. [Google Scholar] [CrossRef]
- Li, X.; Dong, M.; Hu, F.; Qin, Y.; Lu, Z.; Wei, X.; Chen, Y.; Duan, C.; Min, Y. Efficient sensitization of Tb3+ emission by Dy3+ in CaMoO4 phosphors: Energy transfer, tunable emission and optical thermometry. Ceram. Int. 2016, 42, 6094–6099. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062. [Google Scholar] [CrossRef] [PubMed]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Hoke, M.L. MODTRAN5: 2006 update. In Proceedings of the Society of Photo-optical Instrumentation Engineers, Orlando, FL, USA, 8 May 2006. [Google Scholar]
- Zhu, L.; Raman, A.P.; Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl. Acad. Sci. USA 2015, 112, 12282–12287. [Google Scholar] [CrossRef] [PubMed]
- Gentle, A.R.; Smith, G.B. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 2010, 10, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, T.; Tolessa, M.F.; Cho, H.H. Enhancing radiative cooling performance using metal-dielectric-metal metamaterials. J. Mech. Sci. Technol. 2017, 31, 5107–5112. [Google Scholar] [CrossRef]
Samples | S-5 | S-10 | S-15 | S-20 | S-25 | S-30 |
---|---|---|---|---|---|---|
Volume fraction of SiO2 | 5% | 10% | 15% | 20% | 25% | 30% |
Volume fraction of CaMoO4 | 5% | 10% | 15% | 20% | 25% | 30% |
Ta − Tr (°C) | −3.2 | 10.4 | 16.6 | 14.9 | 11.1 | 7.5 |
Sample Thickness | 1 μm | 3 μm | 6 μm | 8 μm |
---|---|---|---|---|
Ta − Tr (°C) | 6.9 | 16.6 | 12.1 | 10.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Bai, A.; Fang, Z.; Ni, Y.; Lu, C.; Xu, Z. A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight. Materials 2019, 12, 1208. https://doi.org/10.3390/ma12081208
Liu Y, Bai A, Fang Z, Ni Y, Lu C, Xu Z. A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight. Materials. 2019; 12(8):1208. https://doi.org/10.3390/ma12081208
Chicago/Turabian StyleLiu, Yiwei, Anqi Bai, Zhenggang Fang, Yaru Ni, Chunhua Lu, and Zhongzi Xu. 2019. "A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight" Materials 12, no. 8: 1208. https://doi.org/10.3390/ma12081208
APA StyleLiu, Y., Bai, A., Fang, Z., Ni, Y., Lu, C., & Xu, Z. (2019). A Pragmatic Bilayer Selective Emitter for Efficient Radiative Cooling under Direct Sunlight. Materials, 12(8), 1208. https://doi.org/10.3390/ma12081208