The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cold rolling and Microstructure
3.2. Annealed Microstructure
3.3. Aging Microstructure and Tensile Properties
4. Conclusions
- (1)
- The alloy mainly included the deformation induced dislocation structures after cold rolling and no obvious band structure, twin crystal or martensite were observed. During the subsequent short time annealing heat treatment, the average grain size of the alloy was significantly refined.
- (2)
- During the cold rolling process, the process annealing between each rolling pass will affect the microstructure and mechanical properties of the alloy. The alloy PA at α/β phase field shows finer grain size than at β phase field.
- (3)
- The cold rolled alloy exhibits remarkable textures, including γ-fiber: {111}<123>, {111}<112> and {111}<110>; α-fiber {112}<110> and Goss texture {001}<010>. The γ-fiber of alloy PA at α/β phase field is stronger than that PA at β phase field, and the Goss texture of alloy PA at β phase field is more obvious.
- (4)
- The cold rolled alloy exhibits excellent mechanical properties after short time annealing plus aging treatment. And the strength and elongation of cold rolled alloy PA at α/β phase field are both better than at β phase field due to the lower temperature and the precipitation of primary α phase.
Author Contributions
Funding
Conflicts of Interest
References
- Leyens, C.; Peters, M. Titanium and Titanium Alloys: Fundamentals and Applications; John Wiley & Sons: Berlin, Germany, 2003; p. 532. ISBN 978-3-527-30534-6. [Google Scholar]
- Boyer, R.R.; Briggs, R.D. The use of β titanium alloys in the aerospace industry. J. Mater. Eng. Perform. 2005, 14, 681–685. [Google Scholar] [CrossRef]
- Cotton, J.D.; Briggs, R.D.; Boyer, R.R.; Tamirisakandala, S.; Russo, P.; ShchetnikovJohn, N.; Fanninget, J.C. State of the Art in Beta Titanium Alloys for Airframe Applications. JOM 2015, 67, 1281–1303. [Google Scholar] [CrossRef] [Green Version]
- Nyakana, S.L.; Fanning, J.C.; Boyer, R.R. Quick Reference Guide for β Titanium Alloys in the 00s. J. Mater. Eng. Perform. 2005, 14, 799–811. [Google Scholar] [CrossRef]
- Cai, M.H.; Lee, C.Y.; Lee, Y.K. Effect of grain size on tensile properties of fine-grained metastable β titanium alloys fabricated by stress-induced martensite and its reverse transformations. Scr. Mater. 2012, 66, 606–609. [Google Scholar] [CrossRef]
- Cai, M.H.; Lee, C.Y.; Kang, S.; Lee, Y.K. Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy. Scr. Mater. 2011, 64, 1098–1101. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Tjong, S.C.; Gen, L. In-situ Ti-TiB metal-matrix composite prepared by a reactive pressing process. Scr. Mater. 2000, 42, 367–373. [Google Scholar] [CrossRef]
- Min, X.; Emura, S.; Chen, X.; Zhou, X.; Tsuzaki, K.; Tsuchiyab, K. Deformation microstructural evolution and strain hardening of differently oriented grains in twinning-induced plasticity β titanium alloy. Mater. Sci. Eng. A 2016, 659, 1–11. [Google Scholar] [CrossRef]
- Ahmed, M.; Wexler, D.; Casillas, G.; Savvakinc, D.G.; Perelomaab, E.V. Strain rate dependence of deformation-induced transformation and twinning in a metastable titanium alloy. Acta Metall. 2016, 104, 190–200. [Google Scholar] [CrossRef]
- Du, Z.X.; Xiao, S.L.; Xu, L.J.; Tian, J.; Kong, F.T.; Chen, Y.Y. Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy. Mater. Des. 2014, 55, 183–190. [Google Scholar] [CrossRef]
- Du, Z.X.; Xiao, S.L.; Shen, Y.P.; Liu, J.S.; Liu, J.; Xu, L.J.; Kong, F.T.; Chen, Y.Y. Effect of hot rolling and heat treatment on microstructure and tensile properties of high strength beta titanium alloy sheets. Mater. Sci. Eng. A 2015, 631, 67–74. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Du, Z.X.; Xiao, S.L.; Xu, L.J.; Tian, J. Effect of aging heat treatment on microstructure and tensile properties of a new β high strength titanium alloy. J. Alloys Compd. 2014, 586, 588–592. [Google Scholar] [CrossRef]
- Sadeghpour, S.; Abbasi, S.M.; Morakabati, M. Deformation-induced martensitic transformation in a new metastable β titanium alloy. J. Alloys Compd. 2015, 650, 22–29. [Google Scholar] [CrossRef]
- Zhang, J.; Tasan, C.C.; Lai, M.J.; Dippel, A.C.; Raabe, D. Complexion-mediated martensitic phase transformation in Titanium. Nat. Commun. 2017, 8, 14210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, K.; Niinomi, M.; Nakai, M.; Liu, H.H.; Santos, P.F.; Itoh, Y.; Ikeda, M.; Gepreel, M.A.H.; Narushimag, T. Improvement in mechanical strength of low-cost β-type Ti–Mn alloys fabricated by metal injection molding through cold rolling. J. Alloys Compd. 2016, 664, 272–283. [Google Scholar] [CrossRef]
- Sun, J.F.; Zhang, Y.; Marteleur, M.; Brozeka, C.; Rauchcd, E.F.; Veron, M.; Vermaut, P.; Jacques, P.J.; Primaa, F. A new titanium alloy with a combination of high strength, high strain hardening and improved ductility. Scr. Mater. 2015, 94, 17–20. [Google Scholar] [CrossRef]
- Xu, Y.F.; Yi, D.Q.; Liu, H.Q.; Wu, X.Y.; Wang, B.; Yang, F.L. Effects of cold deformation on microstructure, texture evolution and mechanical properties of Ti-Nb-Ta-Zr-Fe alloy for biomedical applications. Mater. Sci. Eng. A 2012, 547, 64–71. [Google Scholar] [CrossRef]
- Choi, G.; Lee, K. Effect of cold rolling on the microstructural evolution of new β-typed Ti-6Mo-6V-5Cr–3Sn-2.5 Zr alloys. Mater. Charact. 2017, 123, 67–74. [Google Scholar] [CrossRef]
- Xu, T.W.; Li, J.S.; Zhang, S.S.; Zhang, F.S.; Liu, X.H. Cold deformation behavior of the Ti-15Mo-3Al-2.7 Nb-0.2Si alloy and its effect on α precipitation and tensile properties in aging treatment. J. Alloys Compd. 2016, 682, 404–411. [Google Scholar] [CrossRef]
- Hölscher, M.; Raabe, D.; Lücke, K. Relationship between rolling textures and shear textures in fcc and bcc metals. Acta Metall. Mater. 1994, 42, 879–886. [Google Scholar] [CrossRef]
- Ivasishin, O.M.; Markovsky, P.E.; Matviychuk, Y.V.; Semiatin, S.L.; Ward, C.H.; Fox, S. A comparative study of the mechanical properties of high-strength β-titanium alloys. J. Alloys Compd. 2008, 457, 296–309. [Google Scholar] [CrossRef]
- Shao, C.; Hui, W.; Zhang, Y.; Weng, Y. Microstructure and mechanical properties of hot-rolled medium-Mn steel containing 3% aluminum. Mater. Sci. Eng. A 2017, 682, 45–53. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, J.; Lei, J.; Liu, Y.; Yang, R. β-grain growth and influence of its grain size on damage-tolerance property in titanium alloy. Rare Met. Mater. Eng. 2009, 6, 976–981. (In Chinese) [Google Scholar] [CrossRef]
- Li, Q.; Jiao, X. Recrystallization mechanism and activation energies of severely-deformed magnesium during annealing process. Materialia 2019, 5, 100188. [Google Scholar] [CrossRef]
- Hu, G.X.; Cai, X.; Rong, Y.H. Fundamentals of Materials Science; Shang Hai Jiao Tong University Press: Shang Hai, China, 2010; pp. 196–210. ISBN 978-7-313-02480-0. [Google Scholar]
- Atkinson, H.V. Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metal. 1988, 36, 469–491. [Google Scholar] [CrossRef]
- Li, C.L.; Mi, X.J.; Ye, W.J.; Hui, S.X.; Yu, Y.; Wang, W.Q. A study on the microstructures and tensile properties of new beta high strength titanium alloy. J. Alloys Compd. 2013, 550, 23–30. [Google Scholar] [CrossRef]
- Markovsky, P.E.; Bondarchuk, V.I.; Herasymchuk, O.M. Influence of grain size, aging conditions and tension rate on the mechanical behavior of titanium low-cost metastable beta-alloy in thermally hardened condition. Mater. Sci. Eng. A 2015, 645, 150–162. [Google Scholar] [CrossRef]
- Duerig, T.W.; Terlinde, G.T.; Williams, J.C. Phase transformations and tensile properties of Ti-10V-2Fe-3Al. Metall. Trans. A 1980, 11, 1987–1998. [Google Scholar] [CrossRef]
- Devaraj, A.; Joshi, V.V.; Srivastava, A.; Manandhar, S.; Moxson, V.; Duz, V.A.; Lavender, C. A low-cost hierarchical nanostructured beta-titanium alloy with high strength. Nat. Commun. 2016, 7, 11176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivasishin, O.M.; Markovsky, P.E.; Semiatin, S.L.; Ward, C.H. Aging response of coarse-and fine-grained β titanium alloys. Mater. Sci. Eng. A 2005, 405, 296–305. [Google Scholar] [CrossRef]
- Terlinde, G.T.; Duerig, T.W.; Williams, J.C. Microstructure, tensile deformation, and fracture in aged Ti 10V-2Fe-3Al. Metall. Trans. A 1983, 14, 2101–2115. [Google Scholar] [CrossRef]
- Hamajima, T.; Lütjering, G.; Weissmann, S. Importance of slip mode for dispersion-hardened β-titanium alloys. Metall. Trans. 1973, 4, 847–856. [Google Scholar] [CrossRef]
- Sauer, C.; Lütjering, G. Influence of α layers at β grain boundaries on mechanical properties of Ti-alloys. Mater. Sci. Eng. A 2001, 319, 393–397. [Google Scholar] [CrossRef]
Elements | Ti | Al | Mo | V | Cr | Sn | Fe | O | N | H |
---|---|---|---|---|---|---|---|---|---|---|
wt.% | Bal. | 3.76 | 4.81 | 6.07 | 2.95 | 2.22 | 0.605 | 0.13 | 0.014 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Ma, Y.; Liu, F.; Xu, N.; Chen, Y.; Wang, X.; Chen, Y.; Gong, T.; Xu, D. The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet. Materials 2019, 12, 1478. https://doi.org/10.3390/ma12091478
Du Z, Ma Y, Liu F, Xu N, Chen Y, Wang X, Chen Y, Gong T, Xu D. The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet. Materials. 2019; 12(9):1478. https://doi.org/10.3390/ma12091478
Chicago/Turabian StyleDu, Zhaoxin, Yan Ma, Fei Liu, Ning Xu, Yanfei Chen, Xiaopeng Wang, Yuyong Chen, Tianhao Gong, and Dong Xu. 2019. "The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet" Materials 12, no. 9: 1478. https://doi.org/10.3390/ma12091478
APA StyleDu, Z., Ma, Y., Liu, F., Xu, N., Chen, Y., Wang, X., Chen, Y., Gong, T., & Xu, D. (2019). The Influences of Process Annealing Temperature on Microstructure and Mechanical Properties of near β High Strength Titanium Alloy Sheet. Materials, 12(9), 1478. https://doi.org/10.3390/ma12091478