Preparation and Properties of Jute Fiber Long-Chain Fatty Acid Esters in Supercritical Carbon Dioxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reactor Setup
2.3. Experimental Procedure
2.3.1. Esterification of JSE in scCO2
2.3.2. Esterification of Jute Fiber in scCO2
2.3.3. Esterification of JSE in Pyridine
2.4. Characterization
2.4.1. FTIR Spectroscopy
2.4.2. 13C NMR Spectroscopy
2.4.3. SEM
2.4.4. XRD
2.4.5. TGA
2.4.6. Static Water CA Measurements
2.4.7. Mechanical Properties
2.4.8. Dynamic Thermomechanical Analysis (DMA)
2.4.9. Oil Absorption Performance
2.5. Determination of Weight Gain Percentage
3. Results and Discussion
3.1. Esterification of JSE and Jute Fiber
3.2. Optimization of Esterification Conditions
3.3. Contrast Experiment
3.4. Morphological Structure
3.5. Crystallization Properties
3.6. Thermal Properties
3.7. Hydrophobic Properties
3.8. DMA
3.9. Mechanical Properties
3.10. Oil Absorption Performance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagel, M.C.V.; Heinze, T. Study about the efficiency of esterification of cellulose under homogeneous condition: Dependence on the chain length and solvent. Lenzing. Ber. 2012, 90, 85–92. [Google Scholar]
- Guo, Y.; Wang, X.; Li, D.; Du, H.; Wang, X.; Sun, R. Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polym. Bull. 2012, 69, 389–403. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Talja, R.; Asikainen, S.; Harlin, A.; Ropponen, J. The effect of cellulose molar mass on the properties of palmitate esters. Carbohydr. Polym. 2016, 151, 988–995. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, K.; Jiang, X.; Huang, D.; Yang, Y. Acetylation of rice straw for thermoplastic applications. Carbohydr. Polym. 2013, 96, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Miao, J.; Jiang, Z.; Sun, H.; Zhang, L. Cellulose esters synthesized using a tetrabutylammonium acetate and dimethylsulfoxide solvent system. Appl. Phys. A 2016, 122, 656–666. [Google Scholar] [CrossRef]
- Hu, H.; Li, H.; Zhang, Y.; Chen, Y.; Huang, Z.; Huang, A.; Zhu, Y.; Qin, X.; Lin, B. Green mechanical activation-assisted solid phase synthesis of cellulose esters using a co-reactant: Effect of chain length of fatty acids on reaction efficiency and structure properties of products. RSC Adv. 2015, 5, 20656–20662. [Google Scholar] [CrossRef]
- Granström, M.; Pääkkö, M.K.N.; Jin, H.; Kolehmainen, E.; Kilpeläinen, I.; Ikkala, O. Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2011, 2, 1789–1796. [Google Scholar] [CrossRef]
- Cao, X.; Sun, S.; Peng, X.; Zhong, L.; Sun, R.; Jiang, D. Rapid Synthesis of Cellulose Esters by Transesterification of Cellulose with Vinyl Esters under the Catalysis of NaOH or KOH in DMSO. J. Agric. Food Chem. 2013, 61, 2489–2495. [Google Scholar] [CrossRef]
- Sen, S.; Martin, J.D.; Argyropoulos, D.S. Argyropoulos, Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates. ACS Sustain. Chem. Eng. 2013, 1, 858–870. [Google Scholar] [CrossRef]
- Wendler, F.; Kosan, B.; Krieg, M.; Meister, F. Possibilities for the Physical Modification of Cellulose Shapes Using Ionic Liquids. Macromol. Symp. 2012, 280, 112–122. [Google Scholar] [CrossRef]
- Heinze, T.; Dicke, R.; Koschella, A.; Kull, A.H.; Klohr, E.A.; Koch, W. Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol. Chem. Phys. 2000, 201, 627–631. [Google Scholar] [CrossRef]
- Labafzadeh, S.R.; Kavakka, J.S.; Sievänen, K.; Asikkala, J.; Kilpeläinen, I. Reactive dissolution of cellulose and pulp through acylation in pyridine. Cellulose 2012, 19, 1295–1304. [Google Scholar] [CrossRef]
- Abe, M.; Fukaya, Y.; Ohno, H. Fast and facile dissolution of cellulose with tetrabutylphosphonium hydroxide containing 40 wt% water. Chem. Commun. 2012, 48, 1808–1810. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Zhao, P.; Hu, K.; Zhang, L.; Cheng, G. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 2014, 21, 1183–1192. [Google Scholar] [CrossRef]
- Konwar, L.J.; Mäki-Arvela, P.; Thakur, A.J.; Kumar, N.; Mikkola, J.P. Sulfonated carbon as a new, reusable heterogeneous catalyst for one-pot synthesis of acetone soluble cellulose acetate. RSC Adv. 2016, 6, 8829–8837. [Google Scholar] [CrossRef]
- Tang, H.; Butchosa, N.; Zhou, Q. A Transparent, Hazy, and Strong Macroscopic Ribbon of Oriented Cellulose Nanofibrils Bearing Poly(ethylene glycol). Adv. Mater. 2015, 27, 2070–2076. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.K.; Raghavan, P.; Thakur, V.K.; Kessler, M.R. Progress in Green Polymer Composites from Lignin for Multifunctional Applications: A Review. ACS Sustain. Chem. Eng. 2014, 2, 1072–1092. [Google Scholar] [CrossRef]
- Wang, Y.; De, S.; Yan, N. ChemInform Abstract: Rational Control of Nano-Scale Metal-Catalysts for Biomass Conversion. Chem. Commun. 2016, 52, 6210–6224. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Wells, T.; Ragauskas, A.J.; Pu, Y.; Meng, X. Structural Transformation of Isolated Poplar and Switchgrass Lignins during Dilute Acid Treatment. ACS Sustain. Chem. Eng. 2015, 3, 2203–2210. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Kumar, D.; Murthy, G.S. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol. Biofuels 2011, 4, 1–12. [Google Scholar] [CrossRef]
- Liang, Y.; Lei, B.; Zhong, H.T.; Feng, Y.H.; Qu, J.P. A promising screw-extrusion steam explosion pretreatment process: Effects on the morphological and structural features of Eucalyptus woodchips. RSC Adv. 2016, 6, 109657–109663. [Google Scholar] [CrossRef]
- Boyère, C.; Jérôme, C.; Debuigne, A. Input of supercritical carbon dioxide to polymer synthesis: An overview. Eur. Polym. J. 2014, 61, 45–63. [Google Scholar] [CrossRef]
- Xu, W.Z.; Yang, L.; Charpentier, P.A. Preparation of Antibacterial Softwood via Chemical Attachment of Quaternary Ammonium Compounds Using Supercritical CO2. ACS Sustain. Chem. Eng. 2016, 4, 1551–1561. [Google Scholar] [CrossRef]
- Yin, C.; Li, J.; Xu, Q.; Peng, Q.; Liu, Y.; Shen, X. Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydr. Polym. 2007, 67, 147–154. [Google Scholar] [CrossRef]
- Nishino, T.; Kotera, M.; Suetsugu, M.; Murakami, H.; Urushihara, Y. Acetylation of plant cellulose fiber in supercritical carbon dioxide. Polymer 2011, 52, 830–836. [Google Scholar] [CrossRef]
- Yin, C.; Shen, X. Synthesis of cellulose carbamate by supercritical CO2-assisted impregnation: Structure and rheological properties. Eur. Polym. J. 2007, 43, 2111–2116. [Google Scholar] [CrossRef]
- Muljana, H.; Van Der Knoop, S.; Keijzer, D.; Picchioni, F.; Janssen, L.P.; Heeres, H.J. Synthesis of fatty acid starch esters in supercritical carbon dioxide. Carbohydr. Polym. 2010, 82, 346–354. [Google Scholar] [CrossRef]
- Muljana, H.; Picchioni, F.; Heeres, H.J.; Janssen, L.P. Green starch conversions: Studies on starch acetylation in densified CO2. Carbohydr. Polym. 2010, 82, 653–662. [Google Scholar] [CrossRef]
- Quero, F.; Blaker, J.; Eichhorn, S.J.; Lee, K.-Y.; Hill, C.A.S.; Bismarck, A. Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 2011, 18, 595–605. [Google Scholar] [Green Version]
- Crépy, L.; Chaveriat, L.; Banoub, J.; Martin, P.; Joly, N. Synthesis of cellulose fatty esters as plastics-influence of the degree of substitution and the fatty chain length on mechanical properties. ChemSusChem Chem. Sustain. Energy Mater. 2010, 2, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.N.; Wang, W.B.; Wang, A.Q. Effect of surfactant on porosity and swelling behaviors of guar gum-g-poly (sodium acrylate-co-styrene)/attapulgite superabsorbent hydrogels. Coll. Surf. B Biointerfaces 2011, 88, 279–286. [Google Scholar] [CrossRef]
- Jordan Jr, E.F.; Feldeisen, D.W.; Wrigley, A.N. Side-chain crystallinity. I. Heats of fusion and melting transitions on selected homopolymers having long side chains. J. Polym. Sci. Part A-1 Polym. Chem. 1971, 9, 1835–1851. [Google Scholar] [CrossRef]
- Ogura, K.; Miyachi, Y.; Sobue, H.; Nakamura, S. Infrared spectroscopic studies of polymer transitions, 4. A second-order transition of cellulose triacetate in the vicinity of 30 °C. Die Makromol. Chem. Macromol. Chem. Phys. 1975, 176, 1173–1178. [Google Scholar] [CrossRef]
- Klarman, A.F.; Galanti, A.V.; Sperling, L.H. Sperling, Transition temperatures and structural correlations for cellulose triesters. J. Polym. Sci. Part A Polym. Chem. 1969, 7, 1513–1523. [Google Scholar] [CrossRef]
- Crépy, L.; Miri, V.; Joly, N.; Martin, P.; Lefebvre, J.-M. Effect of side chain length on structure and thermomechanical properties of fully substituted cellulose fatty esters. Carbohydr. Polym. 2011, 83, 1812–1820. [Google Scholar] [CrossRef]
- Lei, B.; Liang, Y.; Feng, Y.; He, H.; Yang, Z. Preparation and Characteristics of Biocomposites Based on Steam Exploded Sisal Fiber Modified with Amphipathic Epoxidized Soybean Oil Resin. Materials 2018, 11, 1731. [Google Scholar] [CrossRef]
- Ma, P.T.; Lan, J.S.; Feng, Y.H.; Liu, R.L.; Qu, J.P.; He, H.Z. Effects of contimuous steam explosion on macrostructue and propweties of eucalyptus fibers. Bioresources 2016, 11, 1417–1431. [Google Scholar]
- Mysore, D.; Viraraghavan, T.; Jin, Y.C. Treatment of oily waters usingvermiculite. Water Res. 2005, 39, 2643–2653. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, S.; Xu, Q.; Wang, H. Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr. Polym. 2013, 83, 1575–1581. [Google Scholar] [CrossRef]
- Lockemann, C.A.; Soto-Soliz, S.M.D.; Schlünder, E.U. High-pressure phase equilibria and densities of the binary system carbon dioxide/methyl laurate. Chem. Eng. Process. Process. Intensif. 1995, 34, 561–564. [Google Scholar] [CrossRef]
- Knez, Ž.; Laudani, C.G.; Habulin, M.; Reverchon, E. Exploiting the pressure effect on lipase-catalyzed wax ester synthesis in dense carbon dioxide. Biotechnol. Bioeng. 2007, 97, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Rodionova, G.; Lenes, M.; Eriksen, Ø.; Gregersen, Ø. Surface chemical modification of microfibrillated cellulose: Improvement of barrier properties for packaging applications. Cellulose 2011, 18, 127–134. [Google Scholar] [CrossRef]
- Olaru, N.; Olaru, L.; Vasile, C.; Ander, P. Surface modified cellulose obtained by acetylation without solvents of bleached and unbleached kraft pulps. Polimery 2011, 56, 834–840. [Google Scholar]
- Jebrane, M.; Terziev, N.; Heinmaa, I. Biobased and Sustainable Alternative Route to Long-Chain Cellulose Esters. Biomacromolecules 2017, 18, 498–504. [Google Scholar] [CrossRef]
- Li, C.; Liu, G.; Nges, I.A.; Liu, J. Enhanced biomethane production from Miscanthus lutarioriparius using steam explosion pretreatment. Fuel 2016, 179, 267–273. [Google Scholar] [CrossRef]
- Winkler, H.; Vorwerg, W.; Rihm, R. Thermal and mechanical properties of fatty acid starch esters. Carbohydr. Polym. 2014, 102, 941–949. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.F.; Pfeiffer, K.S.; Hussain, M.A. Unconventional cellulose esters: Synthesis, characterization and structure-property relations. Cellulose 2003, 10, 283–296. [Google Scholar] [CrossRef]
- Back, E.L.; Salmen, N.L. Glass transitions of wood components hold implications for molding and pulping processes. TAPPI J. Tech. Assoc. Pulp Paper Ind. 1982, 65, 107–110. [Google Scholar]
Sample | JL-8 | JL-10 | JL-12 | JL-14 | JL-16 |
Contact Angle (°) | 105.4 | 106.4 | 107.1 | 118.1 | 109.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Jiang, Y.; Huang, B.; Zhang, M.; Feng, Y.; Yang, Z. Preparation and Properties of Jute Fiber Long-Chain Fatty Acid Esters in Supercritical Carbon Dioxide. Materials 2019, 12, 1499. https://doi.org/10.3390/ma12091499
Li C, Jiang Y, Huang B, Zhang M, Feng Y, Yang Z. Preparation and Properties of Jute Fiber Long-Chain Fatty Acid Esters in Supercritical Carbon Dioxide. Materials. 2019; 12(9):1499. https://doi.org/10.3390/ma12091499
Chicago/Turabian StyleLi, Chong, Yueping Jiang, Baoshan Huang, Menghang Zhang, Yanhong Feng, and Zhitao Yang. 2019. "Preparation and Properties of Jute Fiber Long-Chain Fatty Acid Esters in Supercritical Carbon Dioxide" Materials 12, no. 9: 1499. https://doi.org/10.3390/ma12091499
APA StyleLi, C., Jiang, Y., Huang, B., Zhang, M., Feng, Y., & Yang, Z. (2019). Preparation and Properties of Jute Fiber Long-Chain Fatty Acid Esters in Supercritical Carbon Dioxide. Materials, 12(9), 1499. https://doi.org/10.3390/ma12091499