Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Z.; Curtin, W.A. The origins of high hardening and low ductility in magnesium. Nat. Cell Boil. 2015, 526, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ahmad, R.; Yin, B.; Sandlöbes, S.; Curtin, W.A. Mechanistic origin and prediction of enhanced ductility in magnesium alloys. Science 2018, 359, 447–452. [Google Scholar] [CrossRef]
- Zeng, Z.; Stanford, N.; Davies, C.H.J.; Nie, J.F.; Birbilis, N. Magnesium Extrusion Alloys: A Review of Developments and Prospects. Int. Mater. Rev. 2018, 64, 27–62. [Google Scholar] [CrossRef]
- Bohlen, J.; Cano, G.; Drozdenko, D.; Dobroň, P.; Kainer, K.U.; Gall, S.; Müller, S.; Letzig, D. Processing Effects on the Formability of Magnesium Alloy Sheets. Metals 2018, 8, 147. [Google Scholar] [CrossRef]
- Guo, S.; Liu, R.; Jiang, X.; Zhang, H.; Zhang, D.; Wang, J.; Pan, F. Statistical Analysis on the Mechanical Properties of Magnesium Alloys. Materials 2017, 10, 1271. [Google Scholar] [CrossRef] [PubMed]
- Von Mises, R. Mechanics of the ductile form changes of crystals. Zeitschrift Fur Angew. Math. Und Mech. 1928, 8, 161–185. [Google Scholar]
- Wang, W.Y.; Shang, S.L.; Wang, Y.; Mei, Z.G.; Darling, K.A.; Kecskes, L.J.; Mathaudhu, S.N.; Hui, X.D.; Liu, Z.K. Effects of Alloying Elements on Stacking Fault Energies and Electronic Structures of Binary Mg Alloys: A First-Principles Study. Mater. Res. Lett. 2014, 2, 29–36. [Google Scholar] [CrossRef]
- Pei, Z.; Ma, D.; Friák, M.; Svendsen, B.; Raabe, D.; Neugebauer, J. From Generalized Stacking Fault Energies to Dislocation Properties: Five-Energy-Point Approach and Solid Solution Effects in Magnesium. Phys. Rev. B 2015, 92, 064107. [Google Scholar] [CrossRef]
- Dong, Q.; Luo, Z.; Zhu, H.; Wang, L.; Ying, T.; Jin, Z.; Li, D.; Ding, W.; Zeng, X. Basal-plane stacking-fault energies of Mg alloys: A first-principles study of metallic alloying effects. J. Mater. Sci. Technol. 2018, 34, 1773–1780. [Google Scholar] [CrossRef]
- Moitra, A.; Kim, S.G.; Horstemeyer, M.F. Solute Effect on the Dislocation Nucleation Mechanism in Magnesium. Acta Mater. 2014, 75, 106–112. [Google Scholar] [CrossRef]
- Muzyk, M.; Pakiela, Z.; Kurzydlowski, K. Generalized stacking fault energy in magnesium alloys: Density functional theory calculations. Scr. Mater. 2012, 66, 219–222. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.-Y.; Wang, H.-Y.; Liu, G.-J.; Jiang, Q.-C. Effects of doping atoms on the generalized stacking-fault energies of Mg alloys from first-principles calculations. Scr. Mater. 2013, 69, 445–448. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Zhang, N.; Wang, C.; Jiang, Q.-C. First-principles study of the generalized stacking fault energy in Mg–3Al–3Sn alloy. Scr. Mater. 2011, 65, 723–726. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Ding, Z.; Liu, W.; Zhao, Y.; Zhu, Y. Effect of charge redistribution factor on stacking-fault energies of Mg-based binary alloys. Scr. Mater. 2016, 112, 101–105. [Google Scholar] [CrossRef]
- Dou, Y.; Zhang, J. Effects of structural relaxation on the generalized stacking fault energies of hexagonal-close-packed system from first-principles calculations. Comput. Mater. Sci. 2015, 98, 405–409. [Google Scholar] [CrossRef]
- Zhang, J.; Dou, Y.; Liu, G.; Guo, Z.X. First-principles study of stacking fault energies in Mg-based binary alloys. Comput. Mater. Sci. 2013, 79, 564–569. [Google Scholar] [CrossRef]
- Zhang, J.; Dou, Y.; Dong, H. Intrinsic ductility of Mg-based binary alloys: A first-principles study. Scr. Mater. 2014, 89, 13–16. [Google Scholar] [CrossRef]
- Yin, B.; Wu, Z.; Curtin, W.A. First-Principles Calculations of Stacking Fault Energies in Mg-Y, Mg-Al and Mg-Zn Alloys and Implications for Activity. Acta Mater. 2017, 136, 249–261. [Google Scholar] [CrossRef]
- Kumar, A.; Morrow, B.M.; McCabe, R.J.; Beyerlein, I.J. An Atomic-Scale Modeling and Experimental Study of Dislocations in Mg. Mater. Sci. Eng. A 2017, 695, 270–278. [Google Scholar] [CrossRef]
- Wu, Z.; Curtin, W.A. Intrinsic Structural Transitions of the Pyramidal I Dislocation in Magnesium. Scr. Mater. 2016, 116, 104–107. [Google Scholar] [CrossRef]
- Wu, Z.; Curtin, W.A. Mechanism and Energetics of Dislocation Cross-Slip in Hcp Metals. Proc. Natl. Acad. Sci. USA 2016, 113, 11137–11142. [Google Scholar] [CrossRef]
- Wu, Z.; Yin, B.; Curtin, W. Energetics of dislocation transformations in hcp metals. Acta Mater. 2016, 119, 203–217. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, W.; Sun, H.; Li, S.; Zhang, D.; Zhao, Y.; Lavernia, E.J.; Zhu, Y. Origins and Dissociation of Pyramidal Dislocations in Magnesium and Its Alloys. Acta Mater. 2018, 146, 265–272. [Google Scholar] [CrossRef]
- Gonze, X.; Beuken, J.-M.; Caracas, R.; Detraux, F.; Fuchs, M.; Rignanese, G.-M.; Sindic, L.; Verstraete, M.; Zérah, G.; Jollet, F.; et al. First-principles computation of material properties: The ABINIT software project. Comput. Mater. Sci. 2002, 25, 478–492. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582–2615. [Google Scholar] [CrossRef] [Green Version]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, W.; Li, S.; Zhang, D.Z.; Zhao, Y.; Lavernia, E.J.; Zhu, Y. Contribution of van der Waals forces to the plasticity of magnesium. Acta Mater. 2016, 107, 127–132. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Yin, B.; Wu, Z.; Curtin, W. Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Mater. 2017, 123, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; El-Awady, J.A. Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals. Acta Mater. 2014, 71, 319–332. [Google Scholar] [CrossRef]
- Sandlöbes, S.; Pei, Z.; Friák, M.; Zhu, L.-F.; Wang, F.; Zaefferer, S.; Raabe, D.; Neugebauer, J. Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties. Acta Mater. 2014, 70, 92–104. [Google Scholar] [CrossRef]
Slip Mode I | Slip Mode II | |||||
---|---|---|---|---|---|---|
0.3b | 0.4b | 0.7b | 0.3b | 0.4b | 0.7b | |
Mg56 | 175 174 a 230 b | 164 163 a 185 b | 318 315 a 395 b | 175 | 164 | 318 |
Mg55Ag1 | 185 | 138 | 303 | 166 | 188 | 311 |
Mg55Al1 | 181 | 147 | 300 | 163 | 176 | 309 |
Mg55Bi1 | 141 | 146 | 272 | 144 | 142 | 252 |
Mg55Ca1 | 130 | 165 | 315 | 171 | 121 | 244 |
Mg55Dy1 | 146 | 170 | 338 | 185 | 119 | 291 |
Mg55Er1 | 151 | 171 | 340 | 186 | 122 | 300 |
Mg55Gd1 | 140 | 168 | 334 | 183 | 115 | 280 |
Mg55Ho1 | 148 | 171 | 339 | 186 | 121 | 296 |
Mg55Li1 | 176 | 150 | 321 | 173 | 165 | 323 |
Mg55Lu1 | 157 | 172 | 343 | 189 | 129 | 310 |
Mg55Mn1 | 242 | 135 | 356 | 182 | 210 | 376 |
Mg55Nd1 | 123 | 163 | 322 | 177 | 106 | 249 |
Mg55Pb1 | 150 | 152 | 281 | 150 | 146 | 264 |
Mg55Sc1 | 180 | 172 | 355 | 193 | 142 | 353 |
Mg55Sm1 | 133 | 166 | 329 | 180 | 111 | 267 |
Mg55Sn1 | 159 | 147 | 281 | 150 | 155 | 275 |
Mg55Y1 | 147~180 c | 173~195 c | 339~355 c | 185 | 117 | 291 |
Mg55Yb1 | 122 | 160 | 311 | 170 | 121 | 234 |
Mg55Zn1 | 177 | 136 | 293 | 162 | 182 | 306 |
Mg55Zr1 | 201 | 179 | 382 | 207 | 140 | 401 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, Y.; Luo, H.; Zhang, J.; Tang, X. Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study. Materials 2019, 12, 1548. https://doi.org/10.3390/ma12091548
Dou Y, Luo H, Zhang J, Tang X. Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study. Materials. 2019; 12(9):1548. https://doi.org/10.3390/ma12091548
Chicago/Turabian StyleDou, Yuchen, Hong Luo, Jing Zhang, and Xiaohua Tang. 2019. "Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study" Materials 12, no. 9: 1548. https://doi.org/10.3390/ma12091548
APA StyleDou, Y., Luo, H., Zhang, J., & Tang, X. (2019). Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study. Materials, 12(9), 1548. https://doi.org/10.3390/ma12091548