The Effect of Layer Thicknesses in Hybrid Titanium–Carbon Laminates on Low-Velocity Impact Response
Abstract
:1. Introduction
2. Materials and Methods
- HTCL type A: Ti/0/0/90/90/0/0/Ti/0/0/90/90/0/0/Ti (total thickness 2.5 mm);
- HTCL type B: Ti/0/0/90/90/0/90/90/0/90/90/0/0/Ti (total thickness 2.5 mm);
- HTCL type C: Ti/0/90/0/Ti/0/90/90/0/Ti/0/90/0/Ti (total thickness 2.5 mm);
- HTCL type D: Ti/0/0/90/90/Ti/90/90/0/0/Ti (total thickness 2.5 mm).
- tAl = thickness of each separate titanium layer;
- tlam = total thickness of laminate;
- p = number of titanium layers.
3. Results and Discussion
3.1. The Force-Time Curves
3.2. The Energy Absorption Process
- δ—indenter displacement [M];
- vi—velocity of impacting body at the moment of contact [m/s];
- v—final velocity [m/s];
- m—mass of the indenter [kg];
- g—gravitational acceleration, 9.80665 m/s2.
- t—total time of indenter-material contact [s];
- F—force measured at the time of impact [N];
- m—mass of the indenter [kg];
- g—gravitational acceleration.
- t—total time of indenter-material contact [s]
- vi—velocity of impacting body at the moment of contact [m/s]
- F—force measured at the time of impact [N]
- m—mass of the indenter [kg]
- g—gravitational acceleration.
3.3. Bending Stiffness Parameter
3.4. KER Coefficient
- —velocity of the impactor at the contact moment with HTCL surface;
- —velocity of the impactor at the disconnect moment with HTCL surface.
3.5. The Final Damage Appearance
4. Summary
- The laminate with the highest total thickness of the metal part has the smallest force fluctuations in the force increase zone, similar to impacts in the energy range of 5–45 J. This may be due to the greater proportion of elastic-plastic metal in such laminates, as compared to laminates with higher content of composite layers, where the proportion of matrix that is brittle and susceptible to cracking is greater.
- In the qualitative analysis of the influence of metal and composite layer thicknesses in titanium–carbon composite laminates on the value of absorbed energy, based on energy–time curves, a slight tendency can be found according to which laminates with higher total thickness of titanium layers (the proportion of 49% and 60% of total titanium thickness in total laminate thickness) are more often characterized by a lower value of absorbed energy than laminates with a lower metal content. This may be due to the greater proportion of brittle composite in the laminates wherein the energy absorption relates to the greater proportion of brittle composite cracking (the total thickness of carbon/epoxy layers is 60% or more of the total thickness of laminate). However, the changes recorded are insignificant and cannot prove the advantage of laminates with a specific MVF in terms of impact resistance.
- A tendency to shorten the contact time of the indenter with the laminate was observed, regardless of the impact energy. This phenomenon may result from the greater ability of these laminates to accumulate energy (due to a greater proportion of metal in the process of energy transfer through the indenter), which results in greater capacity for faster laminate return to the elastic range after reaching its maximum deflection.
- HTCL laminates with a lower metal content, where the total thickness of metal layers is lower than total composite thickness, are generally characterized by a greater size of degradation as a result of loading with the same energy when compared to laminates with a higher contribution of metal layers in the damage process. The observed phenomenon can be explained by the greater share of the composite, including, in particular, the brittle matrix, in energy absorption by crack propagation, and the expansion of delaminations in brittle carbon composite, especially after impact with a relatively higher impact energy.
- Hybrid titanium/carbon-epoxy laminates, characterized by constant total thickness, but with various thicknesses of individual layers, loaded by low-velocity impact demonstrate that increasing the total thickness of the metal part, even if the metal part is divided into a higher number of layers, contributes to a higher energy absorption capacity due to starting the domination of metal dominant failure mode. At the same time, increasing the density of the interfaces does not strongly affect the damaged area, the limits of impact forces, bending stiffness, and kinetic energy restitution. The above phenomena were observed in the range of metal volume fraction from 0.375 to 0.6, in hybrid titanium/carbon laminates with lay-up schemes of 2/1; 3/2; and 4/3.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vlot, A.; Gunnik, J.W. Fibre Metal Laminates: An Introduction; Kluwer Academic Publishers: Dortreht, The Netherlands, 2001. [Google Scholar]
- Alderliesten, R.C.; Homan, J.J. Fatigue and damage tolerance issues of Glare in aircraft structures. Int. J. Fatigue 2006, 28, 1116–1123. [Google Scholar] [CrossRef]
- Vlot, A. Impact loading on fibre metal laminates. Int. J. Impact. Eng. 1996, 18, 291–307. [Google Scholar] [CrossRef]
- Jakubczak, P. The impact behaviour of hybrid titanium glass laminates−experimental and numerical approach. Int. J. Mech. Sci. 2019, 159, 58–73. [Google Scholar] [CrossRef]
- Hamill, L.; Hofmann, D.C.; Nutt, S. Galvanic corrosion and mechanical behavior of fiber metal laminates of metallic glass and carbon fiber composites. Adv. Eng. Mater. 2018, 20, 1700711. [Google Scholar] [CrossRef]
- Asduni, A.; Choi, A.Y.N. Fiber metal laminates: An advanced material for future aircraft. J. Mater. Process. Tech. 1997, 63, 384–394. [Google Scholar]
- Cortés, P.; Cantwell, W.J. The fracture properties of a fibre–metal laminate based on magnesium alloy. Compos. Part B 2006, 37, 163–170. [Google Scholar] [CrossRef]
- Amacher, R.; Cugnoni, J.; Botsis, J.; Sorensen, L.; Smith, W.; Dransfeld, C. Thin ply composites: Experimental characterization and modeling of size-effects. Compos. Sci. Technol. 2014, 101, 121–132. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Zhang, H.; Yang, J.; Nia, A.B.; Chai, G.B. Mechanical behaviors of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Compos. Struct. 2017, 63, 21–31. [Google Scholar] [CrossRef]
- Molitor, P.; Barron, V.; Young, T. Surface treatment of titanium for adhesive bonding to polymer composites: A review. Int. J. Adhes. Adhes. 2001, 21, 129–136. [Google Scholar] [CrossRef]
- Cortés, P.; Cantwell, W.J. The prediction of tensile failure in titanium-based thermoplastic fibre–metal laminates. Compos. Sci. Technol. 2006, 66, 2306–2316. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Guo, Y.; Shim, V.P.W.; Yang, J.; Chai, G.B. Influence of fiber type on the impact response of titanium-based fiber-metal laminates. Int. J. Impact Eng. 2018, 114, 32–42. [Google Scholar] [CrossRef]
- Reiner, J.; Torres, J.P.; Veidt, M.; Heitzmann, M. Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates. J. Compos. Mater. 2016, 50, 3605–3617. [Google Scholar] [CrossRef]
- Nakatani, H.; Kosaka, T.; Osaka, K.; Sawada, Y. Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Compos Part A 2011, 42, 772–781. [Google Scholar] [CrossRef]
- Bernhardt, S.; Ramulu, M.; Kobayashi, A.S. Low-velocity impact response characterization of a hybrid titanium composite laminate. J. Eng. Mater. Asme. 2007, 129, 220–226. [Google Scholar] [CrossRef]
- Jakubczak, P.; Bieniaś, J.; Surowska, B. The influence of fibre orientation in aluminium–carbon laminates on low-velocity impact resistance. J. Compos. Mater. 2017, 8, 1005–1016. [Google Scholar] [CrossRef]
- Liu, Y.; Liaw, B. Effects of constituents and luy-up configuration on drop-weight tests of fibre metal laminates. Appl. Compos. Mater. 2009, 17, 43–62. [Google Scholar] [CrossRef]
- Zhu, S.; Chai, G.B. Low-velocity impact response of fibre–metal laminates–Experimental and finite element analysis. Compos. Sci. Technol. 2012, 72, 1793–1802. [Google Scholar] [CrossRef]
- Periasamy, M.; Manickam, B.; Hariharasubramanian, K. Impact properties of aluminum-glass fibre reinforced plastic sandwich panels. Mater. Res. 2012, 15, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Chai, G.B.; Manikandan, P. Low velocity impact response of fibre-metal laminates—A review. Compos. Struct. 2014, 107, 363–381. [Google Scholar] [CrossRef]
- Padaki, N.V.; Alagirusamy, R.; Deopura, B.L. Low velocity impact behavior of textile reinforced composites. Indian J. Fibre Text. Res. 2008, 33, 189–202. [Google Scholar]
- Wu, H.; Huang, M.; Li, Q.; Wu, J.; Li, J.; Wang, Z.; Fan, G. Manipulating the plastic strain delocalization through ultra-thinned hierarchical design for strength-ductility synergy. Scr. Mater. 2019, 172, 165–170. [Google Scholar] [CrossRef]
- Morinière, F.D.; Alderliesten, R.C.; Benedictus, R. Development of fibre-metal laminates for improved impact performance. Eur. Phys. J. Spec. Topcs. 2012, 206, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Morinière, F.D.; Alderliesten, R.C.; Sadighi, M.; Benedictus, R. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate. Comp. Struct. 2013, 100, 89–103. [Google Scholar] [CrossRef]
- Bikakis, G.S.E.; Savaidis, A.; Zalimidis, P.; Tsitos, S. Influence of the Metal Volume Fraction on the permanent dent depth and energy absorption of GLARE plates subjected to low velocity impact. Mater. Sci. Eng. 2016, 161, 012055. [Google Scholar] [CrossRef] [Green Version]
- IJpma, M.S. Materials design allowables and qualification, In Fibre Metal Laminates: An introduction; Vlot, A., Ed.; Kluwer Academic Publishers: Dortreht, The Netherlands, 2001; pp. 69–78. [Google Scholar]
- Seyed, A.; Liaw, B.Y. Thickness influence on ballistic impact behaviors of GLARE 5 fiber-metal laminated beams: Experimental and numerical studies. Compos. Struct. 2012, 94, 2585–2598. [Google Scholar] [CrossRef]
- Abdullah, M.R.; Cantwell, W.J. The impact resistance of polypropylene-based fibre–metal laminates. Compos. Sci. Technol. 2006, 66, 1682–1693. [Google Scholar] [CrossRef]
- Bienias, J.; Jakubczak, P. Impact damage growth in carbon fibre aluminium laminates. Compos. Struct. 2017, 172, 147–154. [Google Scholar] [CrossRef]
- ASTM D7136 Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced-Polymer Matrix Composites to a Drop-Weight Impact Event; ASTM: West Conshohocken, PA, USA, 2005; Volume 15.03.
- Yu, G.C.; Wu, L.Z.; Ma, L.; Xiong, J. Low velocity impact of carbon fibre aluminum laminates. Compos. Struct. 2015, 119, 757–766. [Google Scholar] [CrossRef]
- Fan, J.; Guan, Z.W.; Cantwell, W.J. Numerical modelling of perforation failure in fibre metal laminates subjected to low velocity impact loading. Compos. Struct. 2011, 93, 2430–2436. [Google Scholar] [CrossRef]
- Caprino, G.; Spatarob, G.; Del Luongo, S. Low-velocity impact behaviour of fibreglass aluminium laminates. Compos. Part A 2004, 35, 605–616. [Google Scholar] [CrossRef]
- Sadighi, M.; Alderliesten, R.C.; Benedictus, R. Impact resistance of fibre-metal laminates: A review. Int. J. Impact. Eng. 2012, 49, 77–90. [Google Scholar] [CrossRef]
- Bieniaś, J.; Jakubczak, P.; Surowska, B.; Dragan, K. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminum hybrid laminates. Arch. Civ. Mech. Eng. 2015, 4, 925–932. [Google Scholar] [CrossRef]
- Jakubczak, P.; Bieniaś, J. Non-destructive damage detection in fibre metal laminates. J. Nondestruct. Eval. 2019, 38, 49. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Raju, B.B.; Dang, X. Impact perforation resistance of laminated and assembled composite plates. Int. J. Impact Eng. 2000, 24, 733–746. [Google Scholar] [CrossRef]
- Ghelli, D.; D’Ubaldo, O.; Santulli, C.; Nisini, E.; Minak, G. Falling weight impact and indentation damage characterisation of sandwich panels for marine applications. OJCM 2012, 2, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, D. Impact-induced delamination–a view of bending stiffness mismatching. J. Compos. Mater. 1998, 22, 674–692. [Google Scholar] [CrossRef]
- Sadighi, M.; Pärnänen, T.; Alderliesten, R.C.; Sayeaftabi, M.; Benedictus, R. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber metal laminates. Appl. Compos. Mater. 2012, 19, 545–559. [Google Scholar] [CrossRef]
- Richardson, M.O.W.; Wisheart, M.J. Review of low-velocity impact properties of composite materials. Compos. Part A 1996, 27, 1123–1131. [Google Scholar] [CrossRef]
Sample Name | Lay-Up Scheme | Number of Titanium Layers | Number of Single Carbon-Epoxy Layers | Titanium Layer Thickness (tm) [mm] | Total Laminate Thickness (tlam) [mm] | Metal Volume Fraction (MVF) |
---|---|---|---|---|---|---|
A | 3/2 | 3 | 12 | 0.3 | 2.5 | 0.375 |
B | 2/1 | 2 | 12 | 0.5 | 2.5 | 0.4 |
C | 4/3 | 4 | 10 | 0.3 | 2.5 | 0.49 |
D | 3/2 | 3 | 8 | 0.5 | 2.5 | 0.6 |
Impact Energy [J] | Impactor Mass [kg] | Impactor Velocity * [m/s] | Impactor Height [mm] |
---|---|---|---|
5 | 2.006 | 2.23 | 253.5 |
15 | 4.006 | 2.74 | 382 |
30 | 4.006 | 3.87 | 763.6 |
45 | 4.006 | 4.74 | 1145 |
Proportion of Metal Layer Thickness in Total Laminate Thickness [%] | Bending Stiffness [N/mm] | |||
---|---|---|---|---|
Impact Energy | ||||
5 J | 15 J | 30 J | 45 J | |
37.5 HTCL type A | 870 | 867 | 919 | 889 |
40 HTCL type B | 849 | 805 | 814 | 825 |
49 HTCL type C | 1205 | 1098 | 1166 | 1115 |
60 HTCL type D | 1080 | 1038 | 1029 | 996 |
Impact Energy [J] | 5 | 15 | 30 | 45 |
---|---|---|---|---|
KER | ||||
HTCL type A MVF 0.375 | 2.49 | 3.07 | 3.44 | 3.97 |
HTCL type B MVF 0.4 | 2.48 | 3.39 | 4.02 | 4.45 |
HTCL type C MVF 0.49 | 1.85 | 2.16 | 2.79 | 3.88 |
HTCL type D MVF 0.6 | 1.84 | 2.27 | 3.25 | 4.00 |
Laminate Type | Damage Size | Impact Energy [J] | |||
---|---|---|---|---|---|
5 J | 15 J | 30 J | 45 J | ||
HTCL A MVF = 0.375 | Da * | 249 mm2 1.66% | 436 mm2 2.91% | 1191 mm2 7.94% | 854 mm2 5.69% |
(Da/Ta)*100% ** | |||||
HTCL B MVF = 0.4 | Da | 159 mm2 1.06% | 388 mm2 2.59% | 673 mm2 4.49% | 1279 mm2 8.53% |
(Da/Ta)*100% | |||||
HTCL C MVF = 0.49 | Da | 182 mm2 1.22% | 386 mm2 2.57% | 495 mm2 3.3% | 995 mm2 6.64% |
(Da/Ta)*100% | |||||
HTCL D MVF = 0.6 | Da | 180 mm2 1.2% | 366 mm2 2.44% | 525 mm2 3.5% | 995 mm2 6.64% |
(Da/Ta)*100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczak, P.; Bieniaś, J.; Droździel, M.; Podolak, P.; Harmasz, A. The Effect of Layer Thicknesses in Hybrid Titanium–Carbon Laminates on Low-Velocity Impact Response. Materials 2020, 13, 103. https://doi.org/10.3390/ma13010103
Jakubczak P, Bieniaś J, Droździel M, Podolak P, Harmasz A. The Effect of Layer Thicknesses in Hybrid Titanium–Carbon Laminates on Low-Velocity Impact Response. Materials. 2020; 13(1):103. https://doi.org/10.3390/ma13010103
Chicago/Turabian StyleJakubczak, Patryk, Jarosław Bieniaś, Magda Droździel, Piotr Podolak, and Aleksandra Harmasz. 2020. "The Effect of Layer Thicknesses in Hybrid Titanium–Carbon Laminates on Low-Velocity Impact Response" Materials 13, no. 1: 103. https://doi.org/10.3390/ma13010103
APA StyleJakubczak, P., Bieniaś, J., Droździel, M., Podolak, P., & Harmasz, A. (2020). The Effect of Layer Thicknesses in Hybrid Titanium–Carbon Laminates on Low-Velocity Impact Response. Materials, 13(1), 103. https://doi.org/10.3390/ma13010103