Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Otsuka, K.; Wayman, C.M. Shape Memory Materials; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Liu, C. Foundations of MEMS; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Worden, K.; Bullough, W.A.; Haywood, J. Smart Technologies; World Scientific: River Edge, NJ, USA, 2003. [Google Scholar]
- Biesienkierski, A.; Wang, J.; Gepreel, A.-H.M.; Wen, C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012, 8, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Grosdidier, T.; Philippe, M.J. Deformation induced martensite and superelasticity in a β-metastable titanium alloy. Mater. Sci. Eng. A 2000, 291, 218–223. [Google Scholar] [CrossRef]
- Wang, W.; Soper, S.A. Bio-MEMS: Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Al-Zain, Y.; Kim, H.Y.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Shape memory properties of Ti–Nb–Mo biomedical alloys. Acta Mater. 2010, 58, 4212–4223. [Google Scholar] [CrossRef]
- Ijaz, M.F.; Kim, H.Y.; Hosoda, H.; Miyazaki, S. Effect of Sn addition on stress hysteresis and superelastic properties of a Ti–15Nb–3Mo alloy. Scr. Mater. 2014, 72, 29–32. [Google Scholar] [CrossRef]
- Hosoda, H.; Kinoshita, Y.; Fukui, Y.; Inamura, T.; Wakashima, K.; Kim, H.Y.; Miyazaki, S. Effects of short time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy. Mater. Sci. Eng. A 2006, 438, 870–874. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S. Anomalous temperature dependence of the superelastic behavior of Ti–Nb–Mo alloys. Acta Mater. 2011, 59, 1464–1473. [Google Scholar] [CrossRef]
- Zhan, H.; Zeng, W.; Wang, G.; Kent, D.; Dargusch, M. On the deformation mechanisms and strain rate sensitivity of a metastable β Ti–Nb alloy. Scr. Mater. 2015, 107, 34–37. [Google Scholar] [CrossRef]
- Tobe, H.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S. Origin of {3 3 2} twinning in metastable β-Ti alloys. Acta Mater. 2014, 64, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Uchic, M.D.; Dimiduk, D.M.; Florando, J.N.; Nix, W.D. Sample dimensions influence strength and crystal plasticity. Science 2004, 305, 986–989. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.R.; Oliver, W.C.; Nix, W.D. Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 2005, 53, 1821–1830. [Google Scholar] [CrossRef]
- Norfleet, D.M.; Sarosi, P.M.; Manchiraju, S.; Wagner, M.X.; Uchic, M.D.; Anderson, P.M.; Mills, M.J. Transformation-induced plasticity during pseudoelastic deformation in Ni–Ti microcrystals. Acta Mater. 2009, 57, 3549–3561. [Google Scholar] [CrossRef]
- Chen, Y.; Schuh, C.A. Size effects in shape memory alloy microwires. Acta Mater. 2011, 59, 537–553. [Google Scholar] [CrossRef]
- Frick, C.P.; Orso, S.; Arzt, E. Loss of pseudoelasticity in nickel–titanium sub-micron compression pillars. Acta Mater. 2007, 55, 3845–3855. [Google Scholar] [CrossRef]
- Nagoshi, T.; Shibata, A.; Todaka, Y.; Sato, T.; Sone, M. Mechanical behavior of a microsized pillar fabricated from ultrafine-grained ferrite evaluated by a microcompression test. Acta Mater. 2014, 73, 12–18. [Google Scholar] [CrossRef]
- Nagoshi, T.; Chang, T.F.M.; Sone, M. Mechanical Property Evaluation of Electrodeposited Nanocrystalline Metals by Micro-testing. In Electroplating of Nanostructures; Aliofkhazraei, M., Ed.; IntechOpen: London, UK, 2015; pp. 211–240. [Google Scholar]
- Kim, H.Y.; Ikehara, Y.; Kim, J.I.; Hosoda, H.; Miyazaki, S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006, 54, 2419–2429. [Google Scholar] [CrossRef]
- Al-Zain, Y.; Kim, H.Y.; Koyano, T.; Hosoda, H.; Miyazaki, S. A comparative study on the effects of the ω and α phases on the temperature dependence of shape memory behavior of a Ti–27Nb alloy. Scr. Mater. 2015, 103, 37–40. [Google Scholar] [CrossRef]
Elements | Ti | Nb | Fe | Ni | Cu | Mo | W | Au | O | H | N |
---|---|---|---|---|---|---|---|---|---|---|---|
Measured composition (at.%) | Bal. | 26.9 | 0.0519 | 0.0988 | 0.141 | 0.0302 | 0.0221 | 0.0118 | 0.119 | 0.36 | 0.0936 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagoshi, T.; Yasuda, T.; Otaki, N.; Tahara, M.; Hosoda, H.; Sone, M. Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. Materials 2020, 13, 110. https://doi.org/10.3390/ma13010110
Nagoshi T, Yasuda T, Otaki N, Tahara M, Hosoda H, Sone M. Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. Materials. 2020; 13(1):110. https://doi.org/10.3390/ma13010110
Chicago/Turabian StyleNagoshi, Takashi, Takahisa Yasuda, Nao Otaki, Masaki Tahara, Hideki Hosoda, and Masato Sone. 2020. "Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy" Materials 13, no. 1: 110. https://doi.org/10.3390/ma13010110
APA StyleNagoshi, T., Yasuda, T., Otaki, N., Tahara, M., Hosoda, H., & Sone, M. (2020). Evaluation of the Shape Memory Effect by Micro-Compression Testing of Single Crystalline Ti-27Nb Ni-Free Alloy. Materials, 13(1), 110. https://doi.org/10.3390/ma13010110