Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication
Abstract
:1. Introduction
2. Methodology
2.1. Design Structure and Fabrication
2.2. Structure of the OSC
2.3. Fabrication and Measurement of the Proposed Antenna
3. Results and Discussion
3.1. Effect of Organic Solar Cell on the Proposed Antenna Performance
3.2. Effect of Patch width Variation on S-Parameters
3.3. Effect of Air Gap Variation on S-Parameters
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaccaro, S.; Mosig, J.R.; de Maagt, P. Two advanced solar antenna “SOLANT” designs for satellite and terrestrial communications. IEEE Trans. Antennas Propag. 2003, 51, 2028–2034. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Priscila Gonçalves Vasconcelos Sampaioa MOA, González Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Salhi, B.; Wudil, Y.S.; Hossain, M.K.; Al-Ahmed, A.; Al-Sulaiman, F.A. Review of recent developments and persistent challenges in stability of perovskite solar cells. Renew. Sustain. Energy Rev. 2018, 90, 210–222. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Sulaiman, K. Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 2011, 519, 5230–5233. [Google Scholar] [CrossRef]
- Patrick, T.; Oseni, S.O.; Sharma, G.; Yan, Q.; Mola, G.T. Perovskites photovoltaic solar cells An overview of current status. Renew. Sustain. Energy Rev. 2018, 91, 1025–1044. [Google Scholar]
- Maharaja, M.; Kalaiselvan, C. Integration of antennas and solar cells for satellite and terrestrial communication. Int. J. Sci. Res. Publ. 2013, 3, 5. [Google Scholar]
- Tanaka, M.; Suzuki, Y.; Araki, K.; Suzuki, R. Microstrip antenna with solar cells for microsatellites. Electron. Lett. 1995, 31, 5–6. [Google Scholar] [CrossRef]
- Shynu, S.V.; Ons, M.J.R.; McEvoy, P.; Ammann, M.J.; McCormack, S.J.; Norton, B. Integration of microstrip patch antenna with polycrystalline silicon solar cell. IEEE Trans Antennas Propag. 2009, 57, 3969–3972. [Google Scholar] [CrossRef]
- O’Conchubhair, O.; Narbudowicz, A.; McEvoy, P.; Ammann, M.J. Circularly polarised solar antenna for airborne communication nodes. Electron. Lett. 2015, 51, 667–669. [Google Scholar] [CrossRef]
- Narbudowicz, A.; O’Conchubhair, O.; Ammann, M.J.; Heberling, D. Integration of antenna with sun-tracking solar panels. Electron. Lett. 2016, 52, 1325–1327. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, S. Circularly polarized meshed patch antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 51, 352–355. [Google Scholar] [CrossRef]
- Turpin, T.W.; Baktur, R. Meshed patch antennas integrated on solar cells. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 693–696. [Google Scholar] [CrossRef]
- Baktur, R.; Yasin, T. Circularly polarized meshed patch antenna for small satellite application. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1057–1060. [Google Scholar]
- Roo-Ons, M.J.; Shynu, S.V.; Ammann, M.J.; McCormack, S.J.; Norton, B. Transparent patch antenna on a-Si thin-film glass solar module. Electron. Lett. 2011, 47, 85–86. [Google Scholar] [CrossRef] [Green Version]
- Kishk, A.A.; Moharram, M.A. Optically transparent reflect array antenna design with solar cells. IEEE Trans Antennas Propag. 2016, 64, 1700–1712. [Google Scholar]
- Smith, D.; Yurduseven, O. Solar cell stacked dual-polarised patch antenna for 5.8 GHz band WiMAX network. Electron. Lett. 2013, 49, 1514–1515. [Google Scholar]
- O’Conchubhair, O.; Yang, K.; McEvoy, P.; Ammann, M.J. Amorphous silicon solar Vivaldi antenna. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 893–896. [Google Scholar] [CrossRef] [Green Version]
- Dennler, G.; Sariciftci, N.S. Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications. Proc. IEEE 2005, 93, 1429–1439. [Google Scholar] [CrossRef]
- Yin, B.; Yang, L.; Liu, Y.; Chen, Y.; Qi, Q.; Zhang, F.; Yin, S. Solution-processed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl. Phys. Lett. 2010, 97, 139. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, F.F.; Sulaiman, K. Thermal Stability and Reproducibility Enhancement of Organic Solar Cells by Tris (hydroxyquinoline) gallium Dopant Forming a Dual Acceptor Active Layer. ARO Sci. J. Koya Univ. 2018, 6, 69–78. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Ketuly, K.A.; Yahya, M.Y. Effect of Thermal Annealing on a Ternary Organic Solar Cell Incorporating Gaq3 Organometallic as a Boosting Acceptor. J. Inorg. Organomet. Polym. Mater. 2018, 28, 102–109. [Google Scholar] [CrossRef]
- Muhammad, F.F.; Yahya, M.Y.; Sulaiman, K. Improving the performance of solution-processed organic solar cells by incorporating small molecule acceptors into a ternary bulk heterojunction based on DH6T: Mq3: PCBM (M = Ga, Al). Mater. Chem. Phys. 2017, 188, 86–94. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennler, G.; Scharber, M.C.; Brabec, C.J. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338. [Google Scholar] [CrossRef]
- Etxebarria, I.; Ajuria, J.; Pacios, R. Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%. Org. Electron. 2015, 19, 34–60. [Google Scholar] [CrossRef]
- Muhammad, F.F. Design approaches to improve organic solar cells. J. Technol. Innov. Renew. Energy 2014, 3, 63. [Google Scholar] [CrossRef]
- Reyes-Reyes, M.; Kim, K.; Carroll, D.L. High-efficiency photovoltaic devices based on annealed poly (3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6, 6) C 61 blends. Appl. Phys. Lett. 2005, 87, 083506. [Google Scholar] [CrossRef]
- Moerland, R.J.; Hoogenboom, J.P. Subnanometer-accuracy optical distance ruler based on fluorescence quenching by transparent conductors. Optica 2016, 2, 112–117. [Google Scholar] [CrossRef]
- Stelling, C.; Singh, C.; Karg, M.; König, T.A.; Thelakkat, M.; Retsch, M. Plasmonic nanomeshes: Their ambivalent role as transparent electrodes in organic solar cells. Sci. Rep. 2017, 7, 42530. [Google Scholar] [CrossRef]
- Pozar, D.M. Introduction to Microwave Systems. In Microwave Engineering, 4th ed.; Wiley: New York, NY, USA, 2012. [Google Scholar]
Parameters | Value (mm) | Parameters | Value (mm) |
---|---|---|---|
W | 17 | L2 | 1.5 |
L | 21 | L3 | 1.5 |
G1 | 7.8 | L4 | 1.4 |
G2 | 7.3 | P5 | 15.2 |
Gw | 7.27 | W1 | 4 |
Wf1 | 2 | W2 | 10 |
Wf2 | 2.2 | W3 | 6 |
Lf | 8.5 | W4 | 3 |
L1 | 1.3 | W5 | 6.5 |
Parameters | P3HT: PCBM | ITO |
---|---|---|
Relative permittivity | 3.920 | 3.6150 |
Relative permeability | 1.010 | 1.0001 |
Bulk conductivity (S/m) | 0.300 | 106 |
Reference | Bandwidth (GHz) | Max. Gain (dB) | Application | Insolation % |
---|---|---|---|---|
[9] | 2.4–2.5 | 3.7 | Airborne communication nodes, wireless sensor networks. | 100% |
[10] | 2.3–3.2 | 3 | Radio link with solar tracking capability | - |
[11] | 2.45–2.5 | 3.5 | Wireless sensor network | 94.7% |
[13] | 2.45–2.5 | 5.15 | Small satellite | 70% |
[15] | 10.7–12.7 | 26.16 dB | Satellite communications | Not 100% |
[16] | 5.66–5.91 | 7.8 | WiMAX | - |
proposed design | 5–16 | 5.90 | Satellite communications | 100% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkarim, Y.I.; Deng, L.; Awl, H.N.; Muhammadsharif, F.F.; Altintas, O.; Karaaslan, M.; Luo, H. Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication. Materials 2020, 13, 142. https://doi.org/10.3390/ma13010142
Abdulkarim YI, Deng L, Awl HN, Muhammadsharif FF, Altintas O, Karaaslan M, Luo H. Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication. Materials. 2020; 13(1):142. https://doi.org/10.3390/ma13010142
Chicago/Turabian StyleAbdulkarim, Yadgar I., Lianwen Deng, Halgurd N. Awl, Fahmi F. Muhammadsharif, Olcay Altintas, Muharrem Karaaslan, and Heng Luo. 2020. "Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication" Materials 13, no. 1: 142. https://doi.org/10.3390/ma13010142
APA StyleAbdulkarim, Y. I., Deng, L., Awl, H. N., Muhammadsharif, F. F., Altintas, O., Karaaslan, M., & Luo, H. (2020). Design of a Broadband Coplanar Waveguide-Fed Antenna Incorporating Organic Solar Cells with 100% Insolation for Ku Band Satellite Communication. Materials, 13(1), 142. https://doi.org/10.3390/ma13010142