Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Všianská, M.; Šob, M. The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and embrittlement in nickel. Prog. Mater. Sci. 2011, 56, 817–840. [Google Scholar] [CrossRef]
- Rogers, H. Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals. Science 1968, 159, 1057–1064. [Google Scholar] [CrossRef]
- King, A.; Johnson, G.; Engelberg, D.; Ludwig, W.; Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 2008, 321, 382–385. [Google Scholar] [CrossRef]
- Rice, J.R.; Wang, J.-S. Embrittlement of interfaces by solute segregation. Mater. Sci. Eng. A 1989, 107, 23–40. [Google Scholar] [CrossRef]
- Lu, G.-H.; Zhang, Y.; Deng, S.; Wang, T.; Kohyama, M.; Yamamoto, R.; Liu, F.; Horikawa, K.; Kanno, M. Origin of intergranular embrittlement of Al alloys induced by Na and Ca segregation: Grain boundary weakening. Phys. Rev. B 2006, 73. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M. First-principles study on the grain boundary embrittlement of metals by solute segregation: Part I. iron (Fe)-solute (B, C, P, and S) systems. Metall. Mater. Trans. A 2011, 42, 319–329. [Google Scholar] [CrossRef]
- Wachowicz, E.; Ossowski, T.; Kiejna, A. Cohesive and magnetic properties of grain boundaries in bcc Fe with Cr additions. Phys. Rev. B 2010, 81. [Google Scholar] [CrossRef] [Green Version]
- Geng, W.; Freeman, A.J.; Olson, G.B. Influence of alloying additions on grain boundary cohesion of transition metals: First-principles determination and its phenomenological extension. Phys. Rev. B 2001, 63. [Google Scholar] [CrossRef]
- Bauer, K.-D.; Todorova, M.; Hingerl, K.; Neugebauer, J. A first principles investigation of zinc induced embrittlement at grain boundaries in bcc iron. Acta Mater. 2015, 90, 69–76. [Google Scholar] [CrossRef]
- Wu, R.; Freeman, A.; Olson, G. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion. Science 1994, 265, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Geller, C.B.; Freeman, A. The effect of interstitial N on grain boundary cohesive strength in Fe. Scr. Mater. 2004, 50, 1341–1343. [Google Scholar] [CrossRef] [Green Version]
- Meslin, E.; Fu, C.-C.; Barbu, A.; Gao, F.; Willaime, F. Theoretical study of atomic transport via interstitials in dilute Fe−P alloys. Phys. Rev. B 2007, 75. [Google Scholar] [CrossRef]
- Huang, X.; Janisch, R. Partitioning of Interstitial Segregants during Decohesion: A DFT Case Study of the Σ3 Symmetric Tilt Grain Boundary in Ferritic Steel. Materials 2019, 12, 2971. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Kontsevoi, O.Y.; Freeman, A.J.; Olson, G.B. Sodium-induced embrittlement of an aluminum grain boundary. Phys. Rev. B 2010, 82. [Google Scholar] [CrossRef]
- Zhang, S.; Kontsevoi, O.Y.; Freeman, A.J.; Olson, G.B. First principles investigation of zinc-induced embrittlement in an aluminum grain boundary. Acta Mater. 2011, 59, 6155–6167. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Shiga, M.; Kaburaki, H. Grain boundary decohesion by impurity segregation in a nickel-sulfur system. Science 2005, 307, 393–397. [Google Scholar] [CrossRef]
- Razumovskiy, V.I.; Lozovoi, A.; Razumovskii, I. First-principles-aided design of a new Ni-base superalloy: Influence of transition metal alloying elements on grain boundary and bulk cohesion. Acta Mater. 2015, 82, 369–377. [Google Scholar] [CrossRef]
- Kang, J.; Glatzmaier, G.C.; Wei, S.-H. Origin of the Bismuth-Induced Decohesion of Nickel and Copper Grain Boundaries. Phys. Rev. Lett. 2013, 111. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; You, Y.-W.; Kong, X.-S.; Chen, J.-L.; Luo, G.-N.; Lu, G.-H.; Liu, C.; Wang, Z. First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute. Acta Mater. 2016, 120, 315–326. [Google Scholar] [CrossRef]
- Janisch, R.; Elsässer, C. Segregated light elements at grain boundaries in niobium and molybdenum. Phys. Rev. B 2003, 67. [Google Scholar] [CrossRef]
- Tahir, A.; Janisch, R.; Hartmaier, A. Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated C impurites. Model. Simul. Mater. Sci. Eng. 2013, 21. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Eyre, B. Grain boundary segregation and intergranular fracture in molybdenum. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1980, 431–458. [Google Scholar] [CrossRef]
- Seah, M. Adsorption-induced interface decohesion. Acta Metall. 1980, 28, 955–962. [Google Scholar] [CrossRef]
- Gibson, M.A.; Schuh, C.A. A survey of ab-initio calculations shows that segregation-induced grain boundary embrittlement is predicted by bond-breaking arguments. Scr. Mater. 2016, 113, 55–58. [Google Scholar] [CrossRef] [Green Version]
- Lejček, P.; Šob, M.; Paidar, V. Interfacial segregation and grain boundary embrittlement: An overview and critical assessment of experimental data and calculated results. Prog. Mater. Sci. 2017, 87, 83–139. [Google Scholar] [CrossRef]
- Lejček, P.; Šob, M. An analysis of segregation-induced changes in grain boundary cohesion in bcc iron. J. Mater. Sci. 2014, 49, 2477–2482. [Google Scholar] [CrossRef]
- Gibson, M.A.; Schuh, C.A. Segregation-induced changes in grain boundary cohesion and embrittlement in binary alloys. Acta Mater. 2015, 95, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Tran, R.; Xu, Z.; Zhou, N.; Radhakrishnan, B.; Luo, J.; Ong, S.P. Computational study of metallic dopant segregation and embrittlement at molybdenum grain boundaries. Acta Mater. 2016, 117, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Council, N.R. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Zurada, J.M. Introduction to Artificial Neural Systems; West Publishing Company: St. Paul, MN, USA, 1992; Volume 8. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Ubaru, S.; Międlar, A.; Saad, Y.; Chelikowsky, J.R. Formation enthalpies for transition metal alloys using machine learning. Phys. Rev. B 2017, 95. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, H.; Dai, D.; Ding, G.; Wei, X.; Guo, Y. Study on the factors affecting solid solubility in binary alloys: An exploration by Machine Learning. J. Alloy. Compd. 2019, 782, 110–118. [Google Scholar] [CrossRef]
- Wu, H.; Lorenson, A.; Anderson, B.; Witteman, L.; Wu, H.; Meredig, B.; Morgan, D. Robust FCC solute diffusion predictions from ab-initio machine learning methods. Comput. Mater. Sci. 2017, 134, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Tran, H.; Batra, R.; Kim, C.; Ramprasad, R. Machine Learning Models for the Lattice Thermal Conductivity Prediction of Inorganic Materials. Comput. Mater. Sci. 2019, 170. [Google Scholar] [CrossRef] [Green Version]
- Schleder, G.R.; Padilha, A.C.; Acosta, C.M.; Costa, M.; Fazzio, A. From DFT to machine learning: Recent approaches to materials science–a review. J. Phys. Mater. 2019, 2. [Google Scholar] [CrossRef]
- Zhu, Q.; Samanta, A.; Li, B.; Rudd, R.E.; Frolov, T. Predicting phase behavior of grain boundaries with evolutionary search and machine learning. Nat. Commun. 2018, 9, 467. [Google Scholar] [CrossRef] [Green Version]
- Gomberg, J.A.; Medford, A.J.; Kalidindi, S.R. Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Mater. 2017, 133, 100–108. [Google Scholar] [CrossRef]
- Tamura, T.; Karasuyama, M.; Kobayashi, R.; Arakawa, R.; Shiihara, Y.; Takeuchi, I. Fast and scalable prediction of local energy at grain boundaries: Machine-learning based modeling of first-principles calculations. Model. Simul. Mater. Sci. Eng. 2017, 25. [Google Scholar] [CrossRef]
- HKDH, B. Neural networks in materials science. ISIJ Int. 1999, 39, 966–979. [Google Scholar]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception; Elsevier: Amsterdam, NL, USA, 1992; pp. 65–93. [Google Scholar]
- Burden, F.; Winkler, D. Bayesian regularization of neural networks. In Artificial Neural Networks; Humana Press: Totowa, NJ, USA, 2008; pp. 23–42. [Google Scholar]
- Agrawal, A.; Deshpande, P.D.; Cecen, A.; Basavarsu, G.P.; Choudhary, A.N.; Kalidindi, S.R. Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr. Mater. Manuf. Innov. 2014, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 532–538. [Google Scholar] [CrossRef]
- Jiang, X.; Hu, J.; Jia, M.; Zheng, Y. Parameter matching and instantaneous power allocation for the hybrid energy storage system of pure electric vehicles. Energies 2018, 11, 1933. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yu, Z.; Zhang, Y.; Wu, H.; Liao, H.; Deng, S. Prediction and analysis of high velocity oxy fuel (HVOF) sprayed coating using artificial neural network. Surf. Coat. Technol. 2019, 378. [Google Scholar] [CrossRef]
- Gibson, M.A. Segregation and Embrittlement in Metallic Interfaces: Bounds, Models, and Trends. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. [Google Scholar]
Methods | Metrics | SVM with Linear Kernel | SVM with RBF Kernel | ANN |
---|---|---|---|---|
Full fitting | MAE (eV) | 0.286 | 0.233 | 0.265 |
RMSE (eV) | 0.406 | 0.359 | 0.367 | |
SDE (eV) | 0.288 | 0.274 | 0.254 | |
r2 | 0.843 | 0.876 | 0.870 | |
10-fold CV | MAE (eV) | 0.300 | 0.280 | 0.288 |
RMSE (eV) | 0.424 | 0.414 | 0.409 | |
SDE (eV) | 0.300 | 0.305 | 0.290 | |
r2 | 0.827 | 0.835 | 0.839 |
Group | SVM with Linear Kernel | SVM with RBF Kernel | |
---|---|---|---|
C | C | γ | |
G1 | 11.3137085 | 11.3137085 | 22.627417 |
G2 | 11.3137085 | 16 | 2 |
G3 | 8 | 8 | 2 |
G4 | 64 | 16 | 11.3137085 |
G5 | 11.3137085 | 2 | 4 |
G6 | 32 | 11.3137085 | 2 |
G7 | 362.038672 | 2.82842712 | 4 |
G8 | 16 | 11.3137085 | 2 |
G9 | 11.3137085 | 11.3137085 | 11.3137085 |
G10 | 4 | 32 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Wang, Y.-x.; He, K.-n.; Li, X.; Liu, W.; Zhang, Y.; Xu, Y.; Liu, C. Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects. Materials 2020, 13, 179. https://doi.org/10.3390/ma13010179
Wu X, Wang Y-x, He K-n, Li X, Liu W, Zhang Y, Xu Y, Liu C. Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects. Materials. 2020; 13(1):179. https://doi.org/10.3390/ma13010179
Chicago/Turabian StyleWu, Xuebang, Yu-xuan Wang, Kan-ni He, Xiangyan Li, Wei Liu, Yange Zhang, Yichun Xu, and Changsong Liu. 2020. "Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects" Materials 13, no. 1: 179. https://doi.org/10.3390/ma13010179
APA StyleWu, X., Wang, Y. -x., He, K. -n., Li, X., Liu, W., Zhang, Y., Xu, Y., & Liu, C. (2020). Application of Machine Learning to Predict Grain Boundary Embrittlement in Metals by Combining Bonding-Breaking and Atomic Size Effects. Materials, 13(1), 179. https://doi.org/10.3390/ma13010179