Li+ Insertion in Nanostructured TiO2 for Energy Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Material Characterization
2.3. Electrochemical Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J. A Review of Nanostructured Lithium Ion Battery Materials via Low Temperature Synthesis. Recent Pat. Nanotechnol. 2012, 7, 2–12. [Google Scholar] [CrossRef]
- Mahmood, N.; Hou, Y. Electrode Nanostructures in Lithium-Based Batteries. Adv. Sci. 2014, 1, 1400012. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, X. Nanostructured Materials for Li-Ion Batteries and Beyond. Nanomaterials 2016, 6, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Ivanov, S.; Cheng, L.; Wulfmeier, H.; Albrecht, D.; Fritze, H.; Bunda, A. Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes. Electrochim. Acta 2013, 104, 228–235. [Google Scholar] [CrossRef]
- Li, H.; Martha, S.K.; Unocic, R.R.; Luo, H.; Dai, S.; Qu, J. High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries. J. Power Sources 2012, 218, 88–92. [Google Scholar] [CrossRef]
- Shannon, R.D. Phase transformation studies in TiO2 supporting different defect mechanisms in vacuum-reduced and hydrogen-reduced rutile. J. Appl. Phys. 1964, 35, 3414–3416. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.T.; Liu, M.; Wang, D.W.; Sun, T.; Guan, D.S.; Li, F.; Zhou, J.; Sham, T.K.; Cheng, H.M. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays. Nanotechnology 2009, 20, 225701. [Google Scholar] [CrossRef] [Green Version]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.L.; Tolbert, S.H.; Abruña, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Badini, C.; Deambrosis, S.M.; Ostrovskaya, O.; Zin, V.; Padovano, E.; Miorin, E.; Castellino, M.; Biamino, S. Cyclic oxidation in burner rig of TiAlN coating deposited on Ti-48Al-2Cr-2Nb by reactive HiPIMS. Ceram. Int. 2017, 43, 5417–5426. [Google Scholar] [CrossRef]
- Drera, G.; Salvinelli, G.; Brinkman, A.; Huijben, M.; Koster, G.; Hilgenkamp, H.; Rijnders, G.; Visentin, D.; Sangaletti, L. Band offsets and density of Ti3+ states probed by x-ray photoemission on LaAlO3/SrTiO3 heterointerfaces and their LaAlO3 and SrTiO3 bulk precursors. Phys. Rev. B. 2013, 87, 075435. [Google Scholar] [CrossRef] [Green Version]
- Pistoia, G.; Pasquali, M.; Wang, G.; Li, L. Li/Li1+xV3O8 Secondary Batteries: Synthesis and Characterization of an Amorphous Form of the Cathode. J. Electrochem. Soc. 1990, 137, 2365–2370. [Google Scholar] [CrossRef]
- Mattelaer, F.; Geryl, K.; Rampelberg, G.; Dendooven, J.; Detavernier, C. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2017, 9, 13121–13131. [Google Scholar] [CrossRef] [PubMed]
- Tossici, R.; Marassi, R.; Berettoni, S.; Stizza, S.; Pistoia, G. Study of amorphous and crystalline Li1+xV3O8 by FTIR, XAS and electrochemical techniques. Solid State Ion. 1992, 57, 227–234. [Google Scholar] [CrossRef]
- Bresser, D.; Paillard, E.; Binetti, E.; Krueger, S.; Striccoli, M.; Winter, M.; Passerini, S. Percolating networks of TiO2 nanorods and carbon for high power lithium insertion electrodes. J. Power Sources 2012, 206, 301–309. [Google Scholar] [CrossRef]
- Jankulovska, M.; Berger, T.; Wong, S.S.; Gómez, R.; Lana-Villarreal, T. Trap states in TiO2 films made of nanowires, nanotubes or nanoparticles: An electrochemical study. ChemPhysChem 2012, 13, 3008–3017. [Google Scholar] [CrossRef]
- Berger, T.; Monllor-Satoca, D.; Jankulovska, M.; Lana-Villarreal, T.; Gómez, R. The electrochemistry of nanostructured titanium dioxide electrodes. ChemPhysChem 2012, 13, 2824–2875. [Google Scholar] [CrossRef]
- Zukalová, M.; Kalbáč, M.; Kavan, L.; Exnar, I.; Graetzel, M. Pseudocapacitive lithium storage in TiO2 (B). Chem. Mater. 2005, 17, 1248–1255. [Google Scholar] [CrossRef]
- Kim, B.R.; Yun, K.S.; Jung, H.J.; Myung, S.T.; Jung, S.C.; Kang, W.; Kim, S.J. Effect of anatase phase on electrochemical properties of the TiO2 (B) negative electrode for lithium-ion battery application. Curr. Appl. Phys. 2013, 13, S148–S151. [Google Scholar] [CrossRef]
- Mason, C.W.; Yeo, I.; Saravanan, K.; Balaya, P. Interconnected nanofibrous titanium dioxide bronze: An emerging lithium ion anode material for high rate performance. RSC Adv. 2013, 3, 2935–2941. [Google Scholar] [CrossRef]
- Dylla, A.G.; Lee, J.A.; Stevenson, K.J. Influence of mesoporosity on lithium-ion storage capacity and rate performance of nanostructured TiO2 (B). Langmuir 2012, 28, 2897–2903. [Google Scholar] [CrossRef] [PubMed]
- Laskova, B.; Zukalova, M.; Zukal, A.; Bousa, M.; Kavan, L. Capacitive contribution to Li-storage in TiO2 (B) and TiO2 (anatase). J. Power Sources 2014, 246, 103–109. [Google Scholar] [CrossRef]
- Madian, M.; Eychmüller, A.; Giebeler, L. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931. [Google Scholar] [CrossRef]
- Andreas, H.A. Self-discharge in electrochemical capacitors: A perspective article. J. Electrochem. Soc. 2015, 162, A5047–A5053. [Google Scholar] [CrossRef]
- Black, J.; Andreas, H.A. Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution. J. Power Sources 2010, 195, 929–935. [Google Scholar] [CrossRef]
- Bavykin, D.V.; Friedrich, J.M.; Walsh, F.C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 2006, 18, 2807–2824. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.E.; Macak, J.M.; Schmuki, P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 2008, 20, 4135–4139. [Google Scholar]
T150 | T150 | |||||||
---|---|---|---|---|---|---|---|---|
Cathodic | Anodic | Cathodic | Anodic | |||||
Q− | Diffusion-controlled | Capacitive-controlled | Q+ | Diffusion-controlled | Capacitive-controlled | Q− | Q+ | |
µVs−1 | C·g−1 | % | % | C g−1 | % | % | C∙g−1 | C∙g−1 |
50 | 722 | 85 | 15 | 530 | 76 | 24 | 945 | 913 |
100 | 492 | 80 | 20 | 447 | 69 | 31 | 843 | 850 |
200 | 389 | 74 | 26 | 374 | 61 | 39 | 804 | 795 |
400 | 314 | 67 | 33 | 305 | 52 | 48 | – | – |
600 | 275 | 62 | 38 | 269 | 47 | 53 | 709 | 702 |
800 | 246 | 59 | 41 | 243 | 44 | 56 | 693 | 684 |
1000 | 221 | 41 | 59 | 217 | 16 | 84 | 669 | 660 |
2000 | 168 | 33 | 67 | 167 | 48 | 52 | 586 | 578 |
3000 | 141 | 29 | 71 | 140 | 43 | 57 | 536 | 527 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrapede, M.; Savino, U.; Castellino, M.; Amici, J.; Bodoardo, S.; Tresso, E.; Chiodoni, A. Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials 2020, 13, 21. https://doi.org/10.3390/ma13010021
Serrapede M, Savino U, Castellino M, Amici J, Bodoardo S, Tresso E, Chiodoni A. Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials. 2020; 13(1):21. https://doi.org/10.3390/ma13010021
Chicago/Turabian StyleSerrapede, Mara, Umberto Savino, Micaela Castellino, Julia Amici, Silvia Bodoardo, Elena Tresso, and Angelica Chiodoni. 2020. "Li+ Insertion in Nanostructured TiO2 for Energy Storage" Materials 13, no. 1: 21. https://doi.org/10.3390/ma13010021
APA StyleSerrapede, M., Savino, U., Castellino, M., Amici, J., Bodoardo, S., Tresso, E., & Chiodoni, A. (2020). Li+ Insertion in Nanostructured TiO2 for Energy Storage. Materials, 13(1), 21. https://doi.org/10.3390/ma13010021