Artificial Dense Lattices of Magnetic Skyrmions
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results
- -
- Irregular lattice of bubbles is formed. The bubbles occupy only a part of the irradiated lattice points (Figure 2b). The coercive field of sample No. 1 is ~13 mT, which is less than that of the initial film.
- -
- Reversed domains in non-irradiated part of the film appear even in the remnant state (large black area at the top of the image).
- -
- There are no magnetic bubbles inside the reversed domains. This means that the magnetization within the irradiated spots is oriented in the same direction as the magnetization in the non-irradiated region around. Therefore, we conclude that the irradiated area has the easy-axis perpendicular anisotropy [25].
- -
- The atomic force microscopy (AFM) investigations demonstrate that the flatness of irradiated areas is the same as the flatness of the as-prepared film. So, the irradiation does not change the film topography.
- -
- There is no MFM contrast for the irradiated films in the saturated state. From this, we conclude that magnetization magnitude does not alter due to the irradiation.
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dzyaloshinskii, I.E.; Ivanov, B.A. Localized topological solitons in a ferromagnet. JETP Lett. 1979, 29, 540. [Google Scholar]
- Kovalev, A.S.; Kosevich, A.M.; Maslov, K.V. Magnetic vortex-topological soliton in a ferromagnet with an easy-axis anisotropy. JETP Lett. 1979, 30, 296. [Google Scholar]
- Muhlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Boni, P. Skyrmion Lattice in a Chiral Magnet. Science 2009, 323, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.Z.; Onose, Y.; Kanazawa, N.; Park, J.H.; Han, J.H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901. [Google Scholar] [CrossRef] [PubMed]
- Rossler, U.K.; Bogdanov, N.; Pleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797. [Google Scholar] [CrossRef] [Green Version]
- Jonietz, F.; Muhlbauer, S.; Pfleiderer, C.; Neubauer, A.; Munzer, W.; Bauer, A.; Adams, T.; Georgii, R.; Boni, P.; Duine, R.A.; et al. Spin Transfer Torques in MnSi at Ultralow Current Densities. Science 2010, 330, 1648. [Google Scholar] [CrossRef] [Green Version]
- Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. Phys. J. Chem. Solids 1958, 4, 241. [Google Scholar] [CrossRef]
- Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91. [Google Scholar] [CrossRef]
- Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911. [Google Scholar] [CrossRef]
- Heinze, S.; von Bergmann, K.; Menze, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blugel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713. [Google Scholar] [CrossRef]
- Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031. [Google Scholar] [CrossRef]
- Miao, B.F.; Sun, L.; Wu, Y.W.; Tao, X.D.; Xiong, X.; Wen, Y.; Cao, R.X.; Wang, P.; Wu, D.; Zhan, Q.F.; et al. Experimental realization of two-dimensional artificial skyrmion crystals at room temperature. Phys. Rev. B 2014, 90, 174411. [Google Scholar] [CrossRef]
- Li, J.; Tan, A.; Moon, K.W.; Doran, A.; Marcus, M.A.; Young, A.T.; Arenholz, E.; Ma, S.; Yang, R.F.; Hwang, C.; et al. Tailoring the topology of an artificial magnetic skyrmion. Nat. Commun. 2014, 5, 4704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, D.A.; Maranville, B.B.; Balk, A.L.; Kirby, B.J.; Fischer, P.; Pierce, D.T.; Unguris, J.; Borchers, J.A.; Liu, K. Realization of ground-state artificial skyrmion lattices at room temperature. Nat. Commun. 2015, 6, 8462. [Google Scholar] [CrossRef]
- Sun, L.; Cao, R.X.; Miao, B.F.; Feng, Z.; You, B.; Wu, D.; Zhang, W.; Hu, A.; Ding, H.F. Creating an artificial two-dimensional skyrmion crystal by nanopatterning. Phys. Rev. Lett. 2013, 110, 167201. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Sang, H. Three layers of skyrmions in the magnetic triple-layer structure without the Dzyaloshinsky-Moriya interaction. J. Appl. Phys. 2014, 116, 223901. [Google Scholar] [CrossRef]
- Sapozhnikov, M.V.; Ermolaeva, O.L. Two-dimensional skyrmion lattice in a nanopatterned magnetic film. Phys. Rev. B 2015, 91, 024418. [Google Scholar] [CrossRef]
- Sapozhnikov, M.V. Skyrmion lattice in a magnetic film with spatially modulated material parameters. J. Magn. Magn. Mater. 2015, 396, 338. [Google Scholar] [CrossRef]
- Sapozhnikov, M.V.; Ermolaeva, O.V.; Skorokhodov, E.V.; Gusev, N.S.; Drozdov, M.N. Magnetic Skyrmions in Thickness-Modulated Films. JETP Lett. 2018, 107, 364. [Google Scholar] [CrossRef]
- Nefedov, I.M.; Fraerman, A.A.; Shereshevskii, I.A. Magnetostatic mechanism for control of chirality of magnetization distributions. Phys. Solid State 2016, 58, 503. [Google Scholar] [CrossRef]
- Vadimov, V.L.; Sapozhnikov, M.V.; Mel’nikov, A.S. Magnetic skyrmions in ferromagnet-superconductor (F/S) heterostructures. Appl. Phys. Lett. 2018, 113, 032402. [Google Scholar] [CrossRef]
- Mikuszeit, N.; Meckler, S.; Wiesendanger, R.; Miranda, R. Magnetostatics and the rotational sense of cycloidal spin spirals. Phys. Rev. B 2011, 84, 054404. [Google Scholar] [CrossRef] [Green Version]
- Chappert, C.; Bernas, H.; Ferre, J.; Kottler, V.; Jamet, J.-P.; Chen, Y.; Cambril, E.; Devolder, T.; Rousseaux, F.; Mathet, V.; et al. Planar patterned magnetic media obtained by ion irradiation. Science 1998, 280, 1919. [Google Scholar] [CrossRef] [PubMed]
- Devolder, T.; Ferre, J.; Chappert, C.; Bernas, H.; Jamet, J.-P.; Mathet, V. Magnetic properties of He-irradiated Pt/Co/Pt ultrathin films. Phys. Rev. B 2001, 64, 064415. [Google Scholar] [CrossRef]
- Sapozhnikov, M.V.; Vdovichev, S.N.; Ermolaeva, O.L.; Gusev, N.S.; Fraerman, A.A.; Gusev, S.A.; Petrov, Y.V. Artificial dense lattice of magnetic bubbles. Appl. Phys. Lett. 2016, 109, 042406. [Google Scholar] [CrossRef]
- Zhang, S.; Petford-Long, A.; Phatak, C. Creation of artificial skyrmions and antiskyrmions by anisotropy engineering. Sci. Rep. 2016, 6, 31248. [Google Scholar] [CrossRef]
- Angeloni, L.; Passeri, D.; Reggente, M.; Mantovani, D.; Rossi, M. Removal of electrostatic artifacts in magnetic force microscopy by controlled magnetization of the tip: Application to superparamagnetic nanoparticles. Sci. Rep. 2016, 6, 26293. [Google Scholar] [CrossRef] [Green Version]
- Donahue, M.J.; Porter, D.G. OOMMF User’s Guide, Version 1.0; National Institute of Standard and Technology: Gaithersburg, MD, USA, 1999. [Google Scholar]
- Woo, S.; Litzius, K.; Krüger, B.; Im, M.-Y.; Caretta, L.; Richter, K.; Mann, M.; Krone, A.; Reeve, R.M.; Weigand, M.; et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 2016, 15, 501. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, J.; Zhou, Y.; Wang, D.; Liu, X.; Zhao, W.; Ezawa, M. Control and manipulation of a magnetic skyrmionium in nanostructures. Phys. Rev. B 2016, 94, 094420. [Google Scholar] [CrossRef] [Green Version]
- Kolesnikov, A.G.; Stebliy, M.E.; Samardak, A.S.; Ognev, A.V. Skyrmionium–high velocity without the skyrmion Hall effect. Sci. Rep. 2018, 8, 16966. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Thiaville, A.; Rohart, S.; Fert, A.; Chshiev, M. Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. Phys. Rev. Lett. 2015, 115, 267210. [Google Scholar] [CrossRef] [PubMed]
No | D1 (nm) | f1 (cm−2) | D2 (nm) | f2 (cm−2) | a (nm) |
---|---|---|---|---|---|
1 | 100 | 2 × 1015 | - | - | 200 |
2 | 80 | 1015 | 100 | 1016 | 200 |
3 | 180 | 2 × 1015 | 200 | 4 × 1015 | 300 |
No | K0 (J/m3 × 104) | K1 (J/m3 × 104) | K2 (J/m3 × 104) |
---|---|---|---|
1 | 3.2 ± 0.2 | 2.4 ± 0.2 | - |
2 | 3.2 ± 0.2 | 2.7 ± 0.2 | 1.0 |
3 | 3.2 ± 0.2 | 2.4 ± 0.2 | 1.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapozhnikov, M.V.; Petrov, Y.V.; Gusev, N.S.; Temiryazev, A.G.; Ermolaeva, O.L.; Mironov, V.L.; Udalov, O.G. Artificial Dense Lattices of Magnetic Skyrmions. Materials 2020, 13, 99. https://doi.org/10.3390/ma13010099
Sapozhnikov MV, Petrov YV, Gusev NS, Temiryazev AG, Ermolaeva OL, Mironov VL, Udalov OG. Artificial Dense Lattices of Magnetic Skyrmions. Materials. 2020; 13(1):99. https://doi.org/10.3390/ma13010099
Chicago/Turabian StyleSapozhnikov, Maksim V., Yuri V. Petrov, Nikita S. Gusev, Alexey G. Temiryazev, Olga L. Ermolaeva, Victor L. Mironov, and Oleg G. Udalov. 2020. "Artificial Dense Lattices of Magnetic Skyrmions" Materials 13, no. 1: 99. https://doi.org/10.3390/ma13010099
APA StyleSapozhnikov, M. V., Petrov, Y. V., Gusev, N. S., Temiryazev, A. G., Ermolaeva, O. L., Mironov, V. L., & Udalov, O. G. (2020). Artificial Dense Lattices of Magnetic Skyrmions. Materials, 13(1), 99. https://doi.org/10.3390/ma13010099