Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mixing Design
2.3. Specimen Fabrication and Curing
2.4. Test Methods
3. Experimental Results
3.1. Compressive and Splitting Tensile Strength
3.2. Elastic Modulus
3.3. Porosity
4. Discussion
4.1. Relationship Between the Tested and the Predicted Splitting Tensile Strength
4.2. Comparisons of Predicted Elastic Modulus by Design Code Equations
4.3. The Effect of the Admixtures on the Strength
4.4. Total Porosity Effect on the Strength
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xie, J.; Zhao, J.; Wang, J.; Wang, C.; Huang, P.; Fang, C. Sulfate resistance of recycled aggregate concrete with GGBS and fly ash-based geopolymer. Materials 2019, 12, 1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-García, R.; Guerra-Romero, M.I.; Pozo, J.M.M.; de Brito, J.; Juan-Valdés, A. Recycling aggregates for self-compacting concrete production: A feasible option. Materials 2020, 13, 868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etxeberria, M.; Vázquez, E.; Marí, A.; Barra, M. Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cem. Concr. Res. 2007, 37, 735–742. [Google Scholar] [CrossRef]
- Gómez-Soberón, J.M.V. Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 2002, 32, 1301–1311. [Google Scholar] [CrossRef] [Green Version]
- Rilem, T.C. Specifications for concrete with recycled aggregates. Mater. Struct. 1994, 27, 557–559. [Google Scholar]
- Kumar, R.; Gurram, S.C.B.; Minocha, A.K. Influence of recycled fine aggregate on microstructure and hardened properties of concrete. Mag. Concr. Res. 2017, 69, 1288–1295. [Google Scholar] [CrossRef]
- Kurda, R.; Brito, J.; Silvestre, J.D. Indirect evaluation of the compressive strength of recycled aggregate concrete with high fly ash ratios. Mag. Concr. Res. 2017, 70, 204–216. [Google Scholar] [CrossRef]
- Pereira, P.; Evangelista, L.; Brito, J. The effect of superplasticisers on the workability and compressive strength of concrete made with fine recycled concrete aggregates. Constr. Build. Mater. 2012, 28, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Santos, S.A.; Silva, P.R.; Brito, J. Mechanical performance evaluation of self-compacting concrete with fine and coarse recycled aggregates from the precast industry. Materials 2017, 10, 904. [Google Scholar] [CrossRef] [Green Version]
- Zega, C.J.; Maio, Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011, 31, 2336–2340. [Google Scholar] [CrossRef] [Green Version]
- Ju, M.; Park, K.; Park, W.J. Mechanical behavior of recycled fine aggregate concrete with high slump property in normal- and high-strength. Int. J. Concr. Struct. Mater. 2019, 13. [Google Scholar] [CrossRef]
- Yang, K.H.; Chung, H.S.; Ashour, A.F. Influence of type and replacement level of recycled aggregates on concrete properties. ACI Mater. J. 2008, 105, 289–296. [Google Scholar]
- ACI Committee 232. Use of Fly Ash in Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2018. [Google Scholar]
- ACI Committee 233. Guide for the Use of Slag Cement in Concrete and Mortar; American Concrete Institute: Farmington Hills, MI, USA, 2017. [Google Scholar]
- ACI Committee 234. Guide for the Use of Silica Fume in Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2012. [Google Scholar]
- Guo, Z.; Jiang, T.; Zhang, J.; Kong, X.; Chen, C.; Lehman, D.E. Mechanical and durability properties of sustainable self-compacting concrete with recycled concrete aggregate and fly ash, slag and silica fume. Constr. Build. Mater. 2020, 231. [Google Scholar] [CrossRef]
- Nili, M.; Sasanipour, H.; Aslani, F. The effect of fine and coarse recycled aggregates on fresh and mechanical properties of self-compacting concrete. Materials 2019, 12, 1120. [Google Scholar] [CrossRef] [Green Version]
- Mindess, S.; Young, J.F. Darwin Concrete; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Anastasiou, E.; Georgiadis Filikas, K.; Stefanidou, M. Utilization of fine recycled aggregates in concrete with fly ash and steel slag. Constr. Build. Mater. 2014, 50, 154–161. [Google Scholar] [CrossRef]
- Xie, J.; Liu, J.; Liu, F.; Wang, J.; Huang, P. Investigation of a new lightweight green concrete containing sludge ceramsite and recycled fine aggregates. J. Clean. Prod. 2019, 235, 1240–1254. [Google Scholar] [CrossRef]
- Dilbas, H.; Şimşek, M.; Çakir, Ö. An investigation on mechanical and physical properties of recycled aggregate concrete (RAC) with and without silica fume. Constr. Build. Mater. 2014, 61, 50–59. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F.; Taherinezhad, J. Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Constr. Build. Mater. 2019, 227, 116598. [Google Scholar] [CrossRef]
- Silva, R.V.; Brito, J.; Dhir, R.K. The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 2015, 19, 825–849. [Google Scholar] [CrossRef]
- Cho, H.C.; Kim, K.H.; Ahn, J.H.; Yoo, K.S.; Lee, S.Y. Method for Recovering Recycled Fine Aggregates from Construction Waste; Korea Pat. 10-1061018, Korean Intellectual Property Office: Daejeon, Korea, 25 August 2011. [Google Scholar]
- Cho, S.D. Apparatus for Crushing and Polishing of Construction Wastes; Korea Pat. 101101878, Korean Intellectual Property Office: Daejeon, Korea, 27 December 2011. [Google Scholar]
- Ahn, J.H.; Lee, S.Y.; Yoo, Y.H.; Han, K.S.; Yoo, K.S.; Lee, H.J. Apparatus for Manufacturing High-Quality Recycle Aggregate; Korea Pat. 10-0735103, Korean Intellectual Property Office: Daejeon, Korea, 27 June 2007. [Google Scholar]
- ASTM C128. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate; ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- Korean Construction Specification Recycled Aggregate Concrete; Minist. Land, Infrastruct. Transp. Korea: Sejong Special Municipality, Korea, 2016.
- ASTM C136. American society for testing and materials; ASTM C136/C136M. In Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates; ASTM Int: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM C204 Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability; ASTM International: West Conshohocken, PA, USA, 2011.
- Tam, V.W.Y.; Kotrayothar, D.; Xiao, J. Long-term deformation behaviour of recycled aggregate concrete. Constr. Build. Mater. 2015, 100, 262–272. [Google Scholar] [CrossRef]
- ASTM C39. Compressive Strength of Cylindrical Concrete Specimens; ASTM Int: ASTM International: West Conshohocken, PA, USA, 2015. [Google Scholar]
- ASTM C496. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM C469. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM D4404. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Mehta, P.K.; Paulo, J.M. Monteiro, Concrete Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary (ACI 318–14); Am. Concr. Institute: Farmingt. Hills, MI, USA, 2014. [Google Scholar]
- Carino, N.J.; Lew, H.S. Re-examination of the relation between splitting tensile and compressive strength of normal weight concrete. ACI Mater. J. 1982, 79, 214–219. [Google Scholar]
- Model Code. Fib Model Code for Concrete Structures; Ernst Sohn: Berlin, Germany, 2010. [Google Scholar]
- Raphael, J.M. Tensile strength of concrete. ACI J. 1984, 81, 158–165. [Google Scholar]
- Zain, M.F.M.; Mahmud, H.B.; Ilham, A.; Faizal, M. Prediction of splitting tensile strength of high-performance concrete. Cem. Concr. Res. 2002, 32, 1251–1258. [Google Scholar] [CrossRef]
- Pramod, A.V.; Parashivamurthy, P.; Yogananda, M.R.; Srishaila, J.M. Combined effect of ggbs and fly ash on mechanical properties of M25 grade concrete made with recycled fine aggregate. Int. J. Civ. Eng. Technol. 2018, 9, 1048–1058. [Google Scholar]
- Johny, B.; George, M.V.; John, E. Study of properties of sustainable concrete using slag and recycled concrete aggregate. Int. J. Eng. Res. Sci. Technol. 2016, 3, 175–182. [Google Scholar]
- Ragavi, K.; Sudhakar, D.; Jesuraj, E.; Bhuvaneshwari, V.; Kandhan, K.U.M. Mechanical and durability properties of concrete by partial replacement of fine aggregate by RFA and cement by silica fume. Int. J. Intellect. Adv. Res. Eng. Comput. 2018, 6, 1234–1241. [Google Scholar]
- Hasselman, D. Griffith flaws and the effect of porosity on tensile strength of brittle ceramics. J. Am. Ceram. Soc. 1969, 52, 457. [Google Scholar] [CrossRef]
- Chen, X.; Wu, S.; Zhou, J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 2013, 40, 869–874. [Google Scholar] [CrossRef]
- Schiller, K.K. Strength of porous materials. Cem. Concr. Res. 1971, 1, 419–422. [Google Scholar] [CrossRef]
Types of Binders | Fineness (cm2/g) | Density | Chemical Composition (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
LOI ** | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | K2O | |||
OPC * | 3616 | 3.15 | 2.32 | 21.62 | 5.77 | 3.36 | 61.43 | 2.38 | 2.1 | 1.02 |
FA | 3520 | 2.21 | 4.84 | 52.09 | 21.22 | 6.57 | 11.49 | 1.64 | 1.44 | 0.71 |
GGBS | 4080 | 2.92 | 0.75 | 34.25 | 15.14 | 0.91 | 39.48 | 5.96 | 3.51 | 0 |
SF | 160,000 | 2.21 | 0.38 | 96.65 | 1.87 | 0.03 | 0 | 0.19 | 0.32 | 0.56 |
Specimens | Admixture Additions | Unit Weight (kg/m3) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AD * Type | % ** | Water | OPC | FA | GGBS | SF | Natural Sand | Recycled Sand (Fine RCA) | Crushed Gravel | |
R0 | No AD | 168 | 395 | 860 | 871 | |||||
R0FA15 | FA | 15 | 336 | 42 | ||||||
R0FA30 | 30 | 277 | 84 | |||||||
R0GGBS20 | GGBS | 20 | 316 | 73 | ||||||
R0GGBS40 | 40 | 237 | 146 | |||||||
R0SF2.5 | SF | 2.5 | 385 | 7 | ||||||
R0SF5.0 | 5.0 | 376 | 13 | |||||||
R50 | No AD | 168 | 395 | 430 | 398 | 879 | ||||
R50FA15 | FA | 15 | 336 | 42 | ||||||
R50FA30 | 30 | 277 | 84 | |||||||
R50GGBS20 | GGBS | 20 | 316 | 73 | ||||||
R50GGBS40 | 40 | 237 | 146 | |||||||
R50SF2.5 | SF | 2.5 | 385 | 7 | ||||||
R50SF5.0 | 5.0 | 376 | 13 | |||||||
R100 | No AD | 168 | 395 | 843 | 888 | |||||
R100FA15 | FA | 15 | 336 | 42 | ||||||
R100FA30 | 30 | 277 | 84 | |||||||
R100GGBS20 | GGBS | 20 | 316 | 73 | ||||||
R100GGBS40 | 40 | 237 | 146 | |||||||
R100SF2.5 | SF | 2.5 | 385 | 7 | ||||||
R100SF5.0 | 5.0 | 376 | 13 |
Specimens | Slump (mm) | Air Content (%) | ||
---|---|---|---|---|
Measured | Avg. (COV) * | Measured | Avg. (COV) * | |
R0 | 220 | 214 ± 3.3 (2%) | 4 | 4 ± 0.2 (6%) |
R0FA15 | 215 | 3.7 | ||
R0FA30 | 210 | 3.5 | ||
R0GGBS20 | 215 | 4.1 | ||
R0GGBS40 | 212 | 3.9 | ||
R0SF2.5 | 210 | 3.6 | ||
R0SF5.0 | 215 | 3.5 | ||
R50 | 220 | 212 ± 4.4 (2%) | 4.9 | 5 ± 0.3 (6%) |
R50FA15 | 215 | 4.6 | ||
R50FA30 | 212 | 4.2 | ||
R50GGBS20 | 215 | 4.9 | ||
R50GGBS40 | 210 | 5 | ||
R50SF2.5 | 210 | 4.9 | ||
R50SF5.0 | 205 | 4.5 | ||
R100 | 215 | 212 ± 2.3 (1%) | 5.5 | 5 ± 0.4 (8%) |
R100FA15 | 215 | 4.8 | ||
R100FA30 | 210 | 4.2 | ||
R100GGBS20 | 212 | 5.2 | ||
R100GGBS40 | 210 | 5 | ||
R100SF2.5 | 210 | 5.3 | ||
R100SF5.0 | 215 | 5 |
Specimens | Compressive Strength fc (MPa) | Δfc (%) | Splitting Tensile Strength fst (MPa) | Δfst (%) | fst/fc | ||
---|---|---|---|---|---|---|---|
Measured | Avg. * | Measured | Avg. * | ||||
R0 | 31.2, 32.1, 31.0 | 31.4 ± 0.5 | 0% | 3.68, 3.72 | 3.70 ± 0.02 | 0% | 0.12 |
R0FA15 | 34.6, 35.0 | 34.8 ± 0.2 | 10.7% | 3.82, 4.20, 3.70 | 3.91 ± 0.21 | 1.4% | 0.11 |
R0FA30 | 36.9, 35.7, 37.4 | 36.7 ± 0.7 | 16.6% | 4.23, 4.00, 3.86 | 4.03 ± 0.15 | 4.6% | 0.11 |
R0GGBS20 | 43.6, 41.9, 34.1 | 39.9 ± 4.1 | 26.8% | 4.37, 4.27 | 4.32 ± 0.05 | 15.5% | 0.11 |
R0GGBS40 | 41.2, 39.5 | 40.4 ± 0.9 | 28.4% | 4.59, 4.23, 4.41 | 4.41 ± 0.05 | 14.4% | 0.11 |
R0SF2.5 | 39.7, 44.3, 42.3 | 42.1 ± 1.9 | 33.9% | 4.17, 4.51, 4.98 | 4.56 ± 0.33 | 18.2% | 0.11 |
R0SF5.0 | 40.5, 46.0, 42.5 | 43.0 ± 2.3 | 36.8% | 5.25, 4.68, 4.60 | 4.84 ± 0.29 | 25.7% | 0.11 |
R50 | 28.0, 31.0, 32.7 | 30.6 ± 1.9 | –2.8% | 3.78, 3.63 | 3.71 ± 0.08 | –3.8% | 0.12 |
R50FA15 | 29.9, 33.6 | 31.8 ± 1.9 | 1.0% | 3.83, 3.69, 4.04 | 3.85 ± 0.15 | 0.0% | 0.12 |
R50FA30 | 35.4, 33.8 | 34.6 ± 0.8 | 10.1% | 3.94, 4.16 | 4.05 ± 0.11 | 5.1% | 0.12 |
R50GGBS20 | 33.8, 37.7, 37.6 | 36.4 ± 1.8 | 15.7% | 3.91, 3.90 | 3.90 ± 0.01 | 5.5% | 0.11 |
R50GGBS40 | 37.5, 36.0, 37.2 | 36.9 ± 0.6 | 17.4% | 3.95, 3.92 | 3.94 ± 0.02 | 0.0% | 0.11 |
R50SF2.5 | 31.8, 32.1, 30.4 | 31.4 ± 0.7 | 0.0% | 3.90, 3.80, 4.25 | 3.98 ± 0.19 | 3.4% | 0.13 |
R50SF5.0 | 32.7, 33.1 | 32.9 ± 0.2 | 4.7% | 4.54, 4.36 | 4.45 ± 0.09 | 20.3% | 0.13 |
R100 | 29.0, 26.6, 27.4 | 27.7 ± 1.0 | –12.0% | 3.57, 3.66, 3.60 | 3.61 ± 0.04 | –6.3% | 0.13 |
R100FA15 | 32.7, 33.6, 32.2 | 32.8 ± 0.6 | 4.5% | 4.26, 4.04, 3.61 | 3.97 ± 0.27 | 3.0% | 0.12 |
R100FA30 | 22.2, 21.2 | 21.7 ± 0.5 | –31.0% | 3.63, 3.58 | 3.60 ± 0.02 | –6.5% | 0.14 |
R100GGBS20 | 31.1, 34.6, 32.7 | 32.8 ± 1.4 | 4.3% | 3.42, 3.91, 3.75 | 3.70 ± 0.2 | –4.1% | 0.11 |
R100GGBS40 | 28.4, 27.2, 26.9 | 27.5 ± 0.6 | –12.5% | 3.73, 3.43 | 3.58 ± 0.15 | –7.2% | 0.13 |
R100SF2.5 | 33.7, 33.5 | 33.6 ± 0.1 | 6.9% | 3.85, 4.16, 4.09 | 4.03 ± 0.13 | 2.7% | 0.12 |
R100SF5.0 | 21.3, 22.2, 21.3 | 21.6 ± 0.4 | –31.3% | 2.46, 2.72, 2.73 | 2.64 ± 0.13 | –31.6% | 0.12 |
Types of Meaxurement | R0 | R100 | R100FA30 | R100GGBS40 | R100SF5.0 |
---|---|---|---|---|---|
Total intrusion vol. (mL/g) | 0.0803 | 0.1254 | 0.1303 | 0.1136 | 0.1203 |
Total pore area (m2/g) | 7.047 | 10.492 | 17.423 | 13.673 | 10.719 |
Average pore diameter (µm) | 0.0456 | 0.0478 | 0.0299 | 0.0332 | 0.0449 |
Total porosity (%) | 15.99 | 22.73 | 23.71 | 21.06 | 22.55 |
Specimens | Tensile Strength, fst (MPa) | Tensile Strength Prediction (MPa) | ||||
---|---|---|---|---|---|---|
ACI318-14 [37] | Model Code 2010 [39] | Raphael [40] | Carino and Lew [38] | Zain et al. [41] | ||
R0 | 3.70 ± 0.02 | 3.14 (1.18*) | 3.39 (1.09) | 3.12 (1.19) | 3.15 (1.18) | 3.07 (1.21) |
R0FA15 | 3.91 ± 0.21 | 3.30 (1.18) | 3.53 (1.11) | 3.34 (1.17) | 3.38 (1.16) | 3.29 (1.19) |
R0FA30 | 4.03 ± 0.15 | 3.39 (1.19) | 3.60 (1.12) | 3.46 (1.17) | 3.51 (1.15) | 3.40 (1.18) |
R0GGBS20 | 4.45 ± 0.05 | 3.54 (1.26) | 3.72 (1.20) | 3.66 (1.22) | 3.72 (1.20) | 3.59 (1.24) |
R0GGBS40 | 4.41 ± 0.15 | 3.56 (1.24) | 3.74 (1.18) | 3.69 (1.20) | 3.76 (1.17) | 3.62 (1.22) |
R0SF2.5 | 4.56 ± 0.33 | 3.63 (1.25) | 3.80 (1.20) | 3.79 (1.20) | 3.87 (1.18) | 3.72 (1.23) |
R0SF5.0 | 4.84 ± 0.29 | 3.67 (1.32) | 3.83 (1.26) | 3.85 (1.26) | 3.93 (1.23) | 3.77 (1.29) |
R50 | 3.71 ± 0.08 | 3.10 (1.20) | 3.35 (1.11) | 3.06 (1.21) | 3.08 (1.20) | 3.01 (1.23) |
R50FA15 | 3.85 ± 0.15 | 3.16 (1.22) | 3.40 (1.13) | 3.14 (1.23) | 3.17 (1.22) | 3.09 (1.25) |
R50FA30 | 4.05 ± 0.11 | 3.29 (1.23) | 3.52 (1.15) | 3.33 (1.22) | 3.37 (1.20) | 3.27 (1.24) |
R50GGBS20 | 3.90 ± 0.01 | 3.38 (1.15) | 3.59 (1.09) | 3.44 (1.13) | 3.49 (1.12) | 3.38 (1.15) |
R50GGBS40 | 3.94 ± 0.02 | 3.40 (1.16) | 3.61 (0.19) | 3.47 (1.13) | 3.52 (1.12) | 3.42 (1.15) |
R50SF2.5 | 3.98 ± 0.19 | 3.14 (1.27) | 3.39 (1.18) | 3.12 (1.28) | 3.15 (1.27) | 3.07 (1.30) |
R50SF5.0 | 4.45 ± 0.09 | 3.29 (1.35) | 3.52 (1.27) | 3.32 (1.34) | 3.36 (1.32) | 3.27 (1.36) |
R100 | 3.61 ± 0.04 | 2.95 (1.23) | 3.22 (1.12) | 2.87 (1.26) | 2.87 (1.26) | 2.80 (1.29) |
R100FA15 | 3.97 ± 0.27 | 3.21 (1.24) | 3.45 (1.15) | 3.21 (1.24) | 3.24 (1.22) | 3.16 (1.26) |
R100FA30 | 3.60 ± 0.02 | 2.80 (1.29) | 3.09 (1.17) | 2.68 (1.35) | 2.67 (1.35) | 2.60 (1.39) |
R100GGBS20 | 3.70 ± 0.2 | 3.21 (1.15) | 3.45 (1.07) | 3.21 (1.15) | 3.24 (1.14) | 3.16 (1.17) |
R100GGBS40 | 3.58 ± 0.15 | 2.94 (1.22) | 3.21 (1.11) | 2.85 (1.25) | 2.86 (1.25) | 2.79 (1.28) |
R100SF2.5 | 4.03 ± 0.13 | 3.25 (1.24) | 3.48 (1.16) | 3.26 (1.24) | 3.30 (1.22) | 3.21 (1.26) |
R100SF5.0 | 2.64 ± 0.13 | 2.60 (1.01) | 2.92 (0.90) | 2.43 (1.09) | 2.41 (1.09) | 2.33 (1.13) |
Specimens | Avg. * (GPa) | Measured/ACI318 [37] | Measured/Model Code 2010 [39] | ||
---|---|---|---|---|---|
Measured | ACI 318 [37] | Model Code 2010 [39] | |||
R0 | 22.2 ± 0.0 | 26.3 ± 1.26 | 31.5 ± 1.01 | 0.84 | 0.71 |
R0FA15 | 26.3 ± 1.44 | 27.7 ± 0.08 | 21.7±0.06 | 0.95 | 0.81 |
R0FA30 | 26.4 ± 2.19 | 28.5 ± 0.28 | 33.2 ± 0.22 | 0.93 | 0.80 |
R0GGBS20 | 27.9 ± 1.41 | 29.6 ± 1.57 | 34.0 ± 1.21 | 0.94 | 0.82 |
R0GGBS40 | 29.0 ± 0.0 | 29.9 ± 0.31 | 22.8 ± 0.24 | 0.97 | 0.85 |
R0SF2.5 | 25.2 ± 1.85 | 30.5 ± 0.68 | 34.7 ± 0.52 | 0.83 | 0.73 |
R0SF5.0 | 27.6 ± 0.84 | 30.8 ± 0.81 | 35.0 ± 0.61 | 0.90 | 0.79 |
R50 | 17.1 ± 1.99 | 26.0 ± 0.83 | 31.2 ± 0.67 | 0.66 | 0.55 |
R50FA15 | 24.8 ± 3.95 | 26.5 ± 0.77 | 31.6 ± 0.61 | 0.94 | 0.79 |
R50FA30 | 24.7 ± 1.66 | 27.6 ± 0.32 | 32.5 ± 0.25 | 0.89 | 0.76 |
R50GGBS20 | 24.6 ± 4.06 | 28.3 ± 0.71 | 33.1 ± 0.56 | 0.87 | 0.74 |
R50GGBS40 | 24.8 ± 1.27 | 28.5 ± 0.25 | 33.2 ± 0.20 | 0.87 | 0.75 |
R50SF2.5 | 23.6 ± 0.0 | 26.3 ± 0.31 | 31.5 ± 0.25 | 0.90 | 0.75 |
R50SF5.0 | 28.2 ± 1.47 | 26.9 ± 0.1 | 32.0 ± 0.06 | 1.05 | 0.88 |
R100 | 17.2 ± 1.4 | 24.7 ± 0.44 | 30.2 ± 0.36 | 0.70 | 0.57 |
R100FA15 | 28.9 ± 4.35 | 26.9 ± 0.24 | 32.0 ± 0.19 | 1.07 | 0.90 |
R100FA30 | 24.1 ± 1.81 | 23.4 ± 2.14 | 18.6 ± 0.21 | 1.03 | 0.87 |
R100GGBS20 | 26.1 ± 1.03 | 26.9 ± 0.59 | 31.9 ± 0.46 | 0.97 | 0.82 |
R100GGBS40 | 20.7 ± 1.36 | 24.6 ± 0.29 | 30.1 ± 0.24 | 0.84 | 0.69 |
R100SF2.5 | 25.0 ± 0.83 | 27.2 ± 0.04 | 21.5 ± 0.03 | 0.92 | 0.78 |
R100SF5.0 | 21.7 ± 0.0 | 21.8 ± 0.21 | 27.8 ± 0.18 | 0.99 | 0.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, M.; Jeong, J.-G.; Palou, M.; Park, K. Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures. Materials 2020, 13, 2264. https://doi.org/10.3390/ma13102264
Ju M, Jeong J-G, Palou M, Park K. Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures. Materials. 2020; 13(10):2264. https://doi.org/10.3390/ma13102264
Chicago/Turabian StyleJu, Minkwan, Jae-Gwon Jeong, Martin Palou, and Kyoungsoo Park. 2020. "Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures" Materials 13, no. 10: 2264. https://doi.org/10.3390/ma13102264
APA StyleJu, M., Jeong, J. -G., Palou, M., & Park, K. (2020). Mechanical Behavior of Fine Recycled Concrete Aggregate Concrete with the Mineral Admixtures. Materials, 13(10), 2264. https://doi.org/10.3390/ma13102264