Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication
2.2. Selective Laser Sintering
2.3. Characterization
2.4. Microstructures
2.5. Mechanical Properties
2.6. Bioactivity Test
2.7. Cytocompatibility
3. Results and Discussion
3.1. Microstructural Evolution
3.2. Mechanical Properties
3.3. Bioactivity Tests
3.4. Mechanism of Apatite Formation
- ①
- ②
- The isoelectric point of calcium phosphate ceramics is lower than the PH of SBF, so the surface of TTCP exhibits a negative charge characteristic in its exposed crystal structure [38]. The positively charged calcium ions in the SBF were attracted by the ions, and the final ions formed calcium-rich amorphous calcium phosphate (ACP). With the accumulation of Ca2+ ions, the TTCP surface gained a positive charge (Figure 8c) [39,40].
- ③
- ④
- Eventually, the ACP layer transforms into a crystalline apatite layer, which is relatively stable [40]. Ca2+, HPO42−, and OH− ions are then absorbed by the apatite on the TTCP surface by electrostatic attraction and chemical bonding, and an increasing amount of apatite forms on the surfaces of the TTCP scaffolds (Figure 8e) [39,40].
- ⑤
- After formation, the apatite grew and became spherical by consuming Ca2+, HPO42−, OH−, and HCO3− from the SBF [38,40] (Figure 8f). Each spherulite was composed of a large number of flakes that aggregated into a petal shape. The flake was hydroxyapatite and contained carbonate in its structure [38,40].
3.5. Cytocompatibility
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Levengood, S.L.; Zhang, M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef] [PubMed]
- Shuai, C.; Zan, J.; Yang, Y.; Peng, S.; Yang, W.; Qi, F.; Shen, L.; Tian, Z. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Mater. Sci. Eng. 2019, 108, 110486. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fang, J.; Liu, W.; Zhao, Y.; Huang, T.; Cui, J.; Zhou, Z. Part B, In-vitro degradation behavior and biological properties of a novel maleated poly (D, L-lactide-co-glycolide) for biomedical applications. J. Macromol. Sci. Part B 2019, 58, 209–218. [Google Scholar] [CrossRef]
- de Siqueira, L.; Ribeiro, N.; Paredes, M.; Grenho, L.; Cunha-Reis, C.; Trichês, E.S.; Fernandes, M.H.; Sousa, S.R.; Monteiro, F. Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior. Materials 2019, 12, 3879. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; He, Y.; Fu, J.; He, D.; Yang, X.; Xie, J.; Yao, C.; Ye, J.; Xu, S.; Gou, Z. 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation. J. Eur. Ceram. Soc. 2016, 36, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Kong, Y.; Yu, L.; Li, Y.; Gao, C.; Peng, S.; Pan, H.; Zhao, Z.; Shuai, C. Molybdenum disulfide nanosheets embedded with nanodiamond particles: Co-dispersion nanostructures as reinforcements for polymer scaffolds. Appl. Mater. Today 2019, 17, 216–226. [Google Scholar] [CrossRef]
- Wang, G.; Qi, F.; Yang, W.; Yang, Y.; He, C.; Peng, S.; Shuai, C. Crystallinity and Reinforcement in Poly-L-Lactic Acid Scaffold Induced by Carbon Nanotubes. Adv. Polym. Technol. 2019, 2019, 8625325. [Google Scholar] [CrossRef] [Green Version]
- Jayasree, R.; Kumar, T.S.S.; Nankar, R.P.; Doble, M. Accelerated Self-Hardening Tetracalcium Phosphate Based Bone Cement with Enhanced Strength and Biological Behaviour. Trans. Indian Inst. Met. 2015, 68, 299–304. [Google Scholar] [CrossRef]
- Fathi, A.; Radwan, M.J.I.J.E.S. Preparation and Characterization of Nano-Tetracalcium Phosphate Coating on Titanium Substrate. Int. J. Electrochem. Sci. 2016, 11, 3164–3178. [Google Scholar] [CrossRef]
- Tarafder, S.; Balla, V.K.; Davies, N.M.; Bandyopadhyay, A.; Bose, S. Microwave—Sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. J. Tissue Eng. Regen. Med. 2013, 7, 631–641. [Google Scholar] [CrossRef]
- Shuai, C.; Cheng, Y.; Yang, Y.; Peng, S.; Yang, W.; Qi, F. Compounds, Laser additive manufacturing of Zn-2Al part for bone repair: Formability, microstructure and properties. J. Alloy. Compd. 2019, 798, 606–615. [Google Scholar] [CrossRef]
- Yang, Y.; He, C.; Dianyu, E.; Yang, W.; Qi, F.; Xie, D.; Shen, L.; Peng, S.; Shuai, C. Mg bone implant: Features, developments and perspectives. Mater. Des. 2019, 185, 108259. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhou, Y.; Chen, Y.; Nie, H.; Wang, Y.; Li, F.; Zheng, Y.J.A.S.S. Bilayer porous scaffold based on poly-(ɛ-caprolactone) nanofibrous membrane and gelatin sponge for favoring cell proliferation. Appl. Surf. Sci. 2011, 258, 1670–1676. [Google Scholar] [CrossRef]
- Liu, F.H.; Shen, Y.K. Manufacturing, Selective laser sintering of a hydroxyapatite-silica scaffold on cultured MG63 osteoblasts in vitro. Int. J. Precis. Eng. Manuf. 2012, 13, 439–444. [Google Scholar] [CrossRef]
- Shuai, C.; Liu, G.; Yang, Y.; Yang, W.; He, C.; Wang, G.; Liu, Z.; Qi, F.; Peng, S.J.C.; Biointerfaces, S.B. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surf. B Biointerfaces 2020, 185, 110587. [Google Scholar] [CrossRef]
- Cosmin, C.S.; Sorin, M.; Cristian, V. Medical manufacturing innovations. Balneo Res. J. 2015, 6, 20–31. [Google Scholar]
- Cosma, C.; Kessler, J.; Gebhardt, A.; Campbell, I.; Balc, N. Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed. Materials 2020, 13, 905. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.M.; Adewunmi, A.; Schek, R.M.; Flanagan, C.L.; Krebsbach, P.H.; Feinberg, S.E.; Hollister, S.J.; Das, S. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 2005, 26, 4817–4827. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Yang, Q.; Wang, S.; Wang, J.; Ma, J.; Noh, I.; Mikos, A.G.; Zhang, S. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials 2017, 137, 37. [Google Scholar] [CrossRef]
- Shuai, C.; Yang, W.; He, C.; Peng, S.; Gao, C.; Yang, Y.; Qi, F.; Feng, P. A magnetic micro-environment in scaffolds for stimulating bone regeneration. Mater. Des. 2020, 185, 108275. [Google Scholar] [CrossRef]
- Hayashi-Sakai, S.; Sakai, J.; Sakamoto, M.; Endo, H. Determination of fracture toughness of human permanent and primary enamel using an indentation microfracture method. J. Mater. Sci. Mater. Med. 2012, 23, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Yao, M.; Shuai, C.; Peng, S.; Deng, Y. Nano-SiC reinforced Zn biocomposites prepared via laser melting: Microstructure, mechanical properties and biodegradability. J. Mater. Sci. Technol. 2019, 35, 2608–2617. [Google Scholar] [CrossRef]
- Gao, C.; Yao, M.; Li, S.; Feng, P.; Peng, S.; Shuai, C. Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting. J. Adv. Res. 2019, 20, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Evis, Z.; Arcaklioglu, E. Artificial neural network investigation of hardness and fracture toughness of hydroxylapatite. Ceram. Int. 2011, 37, 1147–1152. [Google Scholar] [CrossRef]
- Mazaheri, M.; Hesabi, Z.R.; Sadrnezhaad, S. Two-step sintering of titania nanoceramics assisted by anatase-to-rutile phase transformation. Scr. Mater. 2008, 59, 139–142. [Google Scholar] [CrossRef]
- Shuai, C.; Feng, P.; Zhang, L.; Gao, C.; Hu, H.; Peng, S.; Min, A. Correlation between properties and microstructure of laser sintered porous β-tricalcium phosphate bone scaffolds. Sci. Technol. Adv. Mater. 2013, 14, 055002. [Google Scholar] [CrossRef] [Green Version]
- Tolouei, R.; Ramesh, S.; Sopyan, I.; Tan, C.Y.; Amiriyan, M.; Teng, W.D. Dependence of the Fracture Toughness on the Sintering Time of Dense Hydroxyapatite Bioceramics. Mater. Sci. Forum 2011, 694, 391–395. [Google Scholar]
- Feng, P.; Gao, C.; Shuai, C.; Peng, S. Toughening and strengthening mechanisms of porous akermanite scaffolds reinforced with nano-titania. RSC Adv. 2015, 5, 3498–3507. [Google Scholar] [CrossRef]
- Montufar, E.B.; Casas-Luna, M.; Horynová, M.; Tkachenko, S.; Fohlerová, Z.; Diaz-de-la-Torre, S.; Dvorak, K.; Celko, L.; Kaiser, J. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Acta Biomater. 2018, 70, 293–303. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, L.; He, L.; Jiang, W.; Zhai, W.; Lin, K.; Chen, L.; Chang, J. Fabrication and characterization of tricalcium silicate bioceramics with high mechanical properties by spark plasma sintering. Int. J. Appl. Ceram. Technol. 2011, 8, 501–510. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, C.; Feng, P.; Xiao, T.; Shuai, C.; Peng, S. Calcium sulfate bone scaffolds with controllable porous structure by selective laser sintering. J. Porous Mater. 2015, 22, 1171–1178. [Google Scholar] [CrossRef]
- Moseke, C.; Gbureck, U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater. 2010, 6, 3815–3823. [Google Scholar] [CrossRef] [PubMed]
- Boukha, Z.; Yeste, M.P.; Cauqui, M.Á.; González-Velasco, J.R. Influence of Ca/P ratio on the catalytic performance of Ni/hydroxyapatite samples in dry reforming of methane. Appl. Catal. A Gen. 2019, 580, 34–45. [Google Scholar] [CrossRef]
- Jalota, S.; Tas, A.C.; Bhaduri, S.B. Synthesis of HA—Seeded TTCP (Ca4 (PO4) 2O) Powders at 1230 °C from Ca (CH3COO) 2H2O and NH4H2PO4. J. Am. Ceram. Soc. 2005, 88, 3353–3360. [Google Scholar] [CrossRef]
- Das, P.; Jana, N.R. Length-controlled synthesis of calcium phosphate nanorod and nanowire and application in intracellular protein delivery. ACS Appl. Mater. Interfaces 2016, 8, 8710–8720. [Google Scholar] [CrossRef]
- Kokubo, T. Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998, 46, 2519–2527. [Google Scholar] [CrossRef]
- Matsuya, S.; Takagi, S.; Chow, L.C. Hydrolysis of tetracalcium phosphate in H3PO4 and KH2PO4. J. Mater. Sci. 1996, 31, 3263–3269. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, Z.; Wang, C.; Chen, J.; Zhang, X. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J. Mater. Sci. Mater. Med. 2005, 16, 795–801. [Google Scholar] [CrossRef]
- Suganthi, R.; Parthiban, S.P.; Elayaraja, K.; Girija, E.; Kulariya, P.; Katharria, Y.; Singh, F.; Asokan, K.; Kanjilal, D.; Kalkura, S.N. Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite. J. Mater. Sci. Mater. Med. 2009, 20, 271. [Google Scholar] [CrossRef]
- Kim, H.-M.; Himeno, T.; Kawashita, M.; Kokubo, T.; Nakamura, T. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: An in vitro assessment. J. R. Soc. Interface 2004, 1, 17–22. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, T.; Li, X.; Long, H.; Bin, S.; Xu, Y. Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials 2020, 13, 2268. https://doi.org/10.3390/ma13102268
Qin T, Li X, Long H, Bin S, Xu Y. Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials. 2020; 13(10):2268. https://doi.org/10.3390/ma13102268
Chicago/Turabian StyleQin, Tian, Xiaoqian Li, Hui Long, Shizhen Bin, and Yong Xu. 2020. "Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications" Materials 13, no. 10: 2268. https://doi.org/10.3390/ma13102268
APA StyleQin, T., Li, X., Long, H., Bin, S., & Xu, Y. (2020). Bioactive Tetracalcium Phosphate Scaffolds Fabricated by Selective Laser Sintering for Bone Regeneration Applications. Materials, 13(10), 2268. https://doi.org/10.3390/ma13102268