Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment
Abstract
:1. Introduction
2. Methodology
2.1. Methods
2.2. Statistical Data Analysis
2.3. Description of the Recompaction Procedure
2.4. Test Procedures
3. Materials
4. Mix Design
4.1. Determining Optimum Emulsion Content
4.2. Mixture Composition
5. Thermographic Study
6. Test Results
6.1. Stiffness Modulus of the Asphalt Mixtures
6.2. Influence of Slag on the Healing Ratios
6.3. Indirect Tensile Strength of the Asphalt Mixtures
6.4. Influence of Slag on the Healing Ratios
7. Conclusions
- The addition of 8% EAF slag into the asphalt mixture design was found to be the most energy-efficient solution by enabling it to speed up the increase of the specimen temperature and, at the same time, optimize the healing efficiency during microwave heating.
- Though the EAF slag mixtures exhibited a slightly lower mechanical response than that of the reference 100% RAP mixture, the 4% and 8% EAF slag mixtures met the minimum indirect tensile strength (ITSdry ≥ 1.7 MPa) values stipulated by the Spanish technical specifications. What is more, the EAF slag mixtures showed similar stiffness modulus values compared to those exhibited by conventional asphalt concrete (AC) mixtures made with a 50/70 pen grade bitumen.
- It was observed that the reference mixture made with siliceous recycled aggregates exhibited much lower susceptibility to microwave radiation heating energy since they reached recovery ratios below 30%—when only one damage-healing cycle is applied. Nevertheless, the 8% EAF slag mixture exhibited a substantial improvement of 52% in the healing performance rates when the temperature increases from 25 °C to 80 °C.
- At 80 °C, the 4% EAF slag mixture showed the highest ITS recovery ratios of 140% when half of the recompaction energy is applied. In other words, 25 recompaction gyrations were found to be sufficient to produce a similar, or even higher, healing effect on the broken specimens in comparison with fifty (50) recompaction gyrations.
- It was found that the optimal inclusion of EAF slag content into the asphalt mixture design, together with the microwave heating temperature, played an even more critical role in the provision of the healing rates than the number of recompaction gyrations applied to the broken specimens. What is more, if the microwave heating temperature of the 8% EAF slag mixture increases above 60 °C, the recovery ratios will remain at the same level of healing performance. Nonetheless, the recovery of the internal cohesion of the 4% EAF slag mixture was found to show a linear and steep upward behavior as the microwave heating temperature increases. Therefore, it would be interesting to determine the optimal heating temperature at which the healing curve reaches its maximum peak, stabilize, and fall again.
- As for the cohesion recovery ratios set at HR = 100%, the mixtures made with 8% EAF slag and 92% RAP exhibited the highest healing efficiency by showing substantial microwave heating energy savings by 69% for ITS, whereas, for the stiffness recovery response, the energy-saving ratio was 61% of kWh/kg, in comparison with the reference recycled mixture.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Li, C.; Wu, S.; Chen, Z.; Tao, G.; Xiao, Y. Enhanced heat release and self-healing properties of steel slag filler based asphalt materials under microwave irradiation. Constr. Build. Mater. 2018, 193, 32–41. [Google Scholar] [CrossRef]
- Gu, F.; Chen, C.; Yin, F.; West, R.C.; Taylor, A. Development of a new cracking index for asphalt mixtures using indirect tensile creep and strength test. Constr. Build. Mater. 2019, 225, 465–475. [Google Scholar] [CrossRef]
- De la Roche, C.; Charrier, J.; Marsac, P.; Molliard, J.M. Evaluation de l’endommagement par fatigue des enrobés bitumineux. Bull. Lab. Ponts Chaussées 2001, 232, 19–28. [Google Scholar]
- Kringos, N.; Schmets, A.; Scarpas, A.; Pauli, T. Towards an understanding of the self- Healing capacity of asphaltic mixtures. Heron 2011, 56, 49–79. [Google Scholar]
- Butt, A.A.; Birgisson, B.; Kringos, N. Optimizing the Highway Lifetime by Improving the Self Healing Capacity of Asphalt. Procedia Soc. Behav. Sci. 2012, 48, 2190–2200. [Google Scholar] [CrossRef] [Green Version]
- Di Benedetto, H.; Nguyen, Q.T.; Sauzéat, C. Nonlinearity, heating, fatigue and thixotropy during cyclic loading of asphalt mixtures. Road. Mater Pavement Des. 2011, 12, 129–158. [Google Scholar] [CrossRef]
- Mazzoni, G.; Stimilli, A.; Canestrari, F. Self-healing capability and thixotropy of bituminous mastics. Int. J. Fatigue 2016, 92, 8–17. [Google Scholar] [CrossRef]
- Pérez-jiménez, F.; Botella, R.; Miró, R. Damage and Thixotropy in Asphalt Mixture and Binder Fatigue Tests. Transp. Res. Rec. J. Transp. Res. Board 2012, 2293, 8–17. [Google Scholar] [CrossRef]
- Little, D.; Bhasin, A. Exploring mechanisms of healing in asphalt mixtures and quantifying its impact. Self healing materials an alternative approach to 20 centuries of materials science. Springer Int. Publ. Switz. 2007, 100, 205–218. [Google Scholar] [CrossRef]
- Phillips, M.C. Multi-step models for fatigue and healing, and binder properties involved in healing. In Proceedings of the Performance Related Properties for Bituminous Binders, Luxembourg, 3–6 May 1999. [Google Scholar]
- Williams, D.; Little, D.; Lytton, R.L.; Kim, Y.R.; Kim, Y. Microdamage Healing in Asphalt and Asphalt Concrete, Volume II: Laboratory and Field Testing to Assess and Evaluate Microdamage and Microdamage Healing; Publication Number: FHWA-HRT-98-142; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2001. [Google Scholar]
- Mouillet, V.; De la Roche, C.; Chailleux, E.; Coussot, P. Thixotropic Behavior of Paving-Grade Bitumens under Dynamic Shear. J. Mater. Civ. Eng. 2012, 24, 23–31. [Google Scholar] [CrossRef]
- Lytton, R.L.; Chen, C.W.; Little, D.N. Microdamage Healing in Asphalt and Asphalt Concrete, Volume 3: A Micromechanics Fracture and Healing Model for Asphalt Concrete; Project summary report, FHWA-RD-98-141: Washington, DC, USA, 2001. [Google Scholar]
- Good, R.J.; Van Oss, C.J. The Modem Theory of Contact Angles and the Hydrogen Bond Components of Surface Energies. In Modern Approaches to Wettability; Shrader, M.E., Loeb, G.I., Eds.; Springer: Boston, MA, USA, 1992. [Google Scholar]
- Su, J.F.; Wang, Y.Y.; Han, N.X.; Yang, P.; Han, S. Experimental investigation and mechanism analysis of novel multi-self-healing behaviors of bitumen using microcapsules containing rejuvenator. Constr. Build. Mater. 2016, 106, 317–329. [Google Scholar] [CrossRef]
- Al-mansoori, T.; Norambuena-contreras, J.; Micaelo, R.; Garcia, A. Self-healing of asphalt mastic by the action of polymeric capsules containing rejuvenators. Constr. Build. Mater. 2018, 161, 330–339. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; Van De Ven, M.; Sierra-beltrán, G. Preparation of capsules containing rejuvenators for their use in asphalt concrete. J. Hazard. Mater. 2010, 184, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, S.; Liu, Q.; Zeng, W.; Chen, Z.; Ye, Q.; Pan, P. Self-healing performance of asphalt mixtures through heating fibers or aggregate. Constr. Build. Mater. 2017, 150, 673–680. [Google Scholar] [CrossRef]
- Garcia, A.; Schlangen, E.; Ven, M. Van De Two Ways of Closing Cracks on Asphalt Concrete Pavements : Microcapsules and Induction Heating. KEM 2010, 418, 573–576. [Google Scholar] [CrossRef]
- Menozzi, A.; Garcia, A.; Partl, M.N.; Tebaldi, G.; Schuetz, P. Induction healing of fatigue damage in asphalt test samples. Constr. Build. Mater. 2015, 74, 162–168. [Google Scholar] [CrossRef]
- García, Á.; Schlangen, E.; Van De Ven, M.; Liu, Q. A simple model to define induction heating in asphalt mastic. Constr. Build. Mater. 2012, 31, 38–46. [Google Scholar] [CrossRef]
- Norambuena-contreras; Garcia, A. Self-healing of asphalt mixture by microwave and induction heating. J. Mater. Des. 2016, 106, 404–414. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Jato-Espino, D.; Castro-Fresno, D.; Calzada-Pérez, M. Self-healing capacity of asphalt mixtures including by-products both as aggregates and heating inductors. Materials (Basel) 2018, 11, 800. [Google Scholar] [CrossRef] [Green Version]
- Flores, G.; Gallego, J.; Giuliani, F.; Autelitano, F. Aging of asphalt binder in hot pavement rehabilitation. Constr. Build. Mater. 2018, 187, 214–219. [Google Scholar] [CrossRef]
- Stroup-Gardiner, M. Recycling and Reclamation of Asphalt Pavements Using in-Place Methods; NCHRP Synthesis 421; NCHRP/TRB: Washington, DC, USA, 2011. [Google Scholar]
- Gómez-meijide, B.; Ajam, H.; Lastra-gonzález, P.; Garcia, A. Effect of air voids content on asphalt self-healing via induction and infrared heating. Constr. Build. Mater. 2016, 126, 957–966. [Google Scholar] [CrossRef]
- Ayar, P.; Moreno-navarro, F.; Rubio-g, M.C. The healing capability of asphalt pavements: A state of the art review. J. Clean. Prod. 2016, 113, 28–40. [Google Scholar] [CrossRef]
- Tabaković, A.; O’Prey, D.; McKenna, D.; Woodward, D. Microwave self-healing technology as airfield porous asphalt friction course repair and maintenance system. Case Stud. Constr. Mater. 2019, 10. [Google Scholar] [CrossRef]
- Phan, T.M.; Park, D.; Ho, T.; Le, M. Crack healing performance of hot mix asphalt containing steel slag by microwaves heating. Constr. Build. Mater. 2018, 180, 503–511. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Gonzalez, A.; Concha, J.L.; Gonzalez-torre, I.; Schlangen, E. Effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. Constr. Build. Mater. 2018, 187, 1039–1050. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, M.; Ahmad, N.; Kamal, M.A.; Rafi, J.; ul Haq, M.F.; Jamal; Zaidi, S.B.A.; Nasir, M.A. Experimental investigation into the structural and functional performance of Graphene Nano-Platelet (GNP)-Doped asphalt. Appl. Sci. 2019, 9, 686. [Google Scholar] [CrossRef] [Green Version]
- Gulisano, F.; Crucho, J.; Gallego, J.; Picado-Santos, L. Microwave Healing Performance of Asphalt Mixture Containing Electric Arc Furnace ( EAF ) Slag and Graphene Nanoplatelets (GNPs). Appl. Sci. 2020, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Chen, L. Dielectric Loss Model for Asphalt Mixture Based on Microwave Heating. Electromagnetics 2017, 37, 49–63. [Google Scholar] [CrossRef]
- Bosisio, R.G.; Spooner, J.; Granger, J. Asphalt Road Maintenance With a Mobile Microwave Power Unit. J. Microw. Power 2016, 9, 381–386. [Google Scholar] [CrossRef]
- Al-Ohaly, A.; Terrel, R. Effect of microwave heating on adhesion and moisture damage of asphalt mixtures. Transp. Res. Board 1988, 27–36. [Google Scholar]
- Minsk, L. Electrically Conductive Asphalt for Control of Snow and Ice Accumulation. US Patent 3,573,427, 6 April 1971. [Google Scholar]
- Minsk, L.D. Electrically conductive asphalt for control of snow and ice accumulation. Transp. Res. Board 1968, 227, 57–63. [Google Scholar]
- García, A.; Bueno, M.; Norambuena-contreras, J.; Partl, M.N. Induction healing of dense asphalt concrete. Constr. Build. Mater. 2013, 49, 1–7. [Google Scholar] [CrossRef]
- Liu, Q.; García, Á.; Schlangen, E.; Ven, M. Van De Induction healing of asphalt mastic and porous asphalt concrete. Constr. Build. Mater. 2011, 25, 3746–3752. [Google Scholar] [CrossRef]
- Tabakovic, A.; Schlangen, E. Self-Healing Technology for Asphalt Pavements; Springer International Publishing: Dübendorf, Switzerland, 2015; ISBN 9781118056776. [Google Scholar] [CrossRef]
- Wang, H.; Yang, J.; Lu, G.; Liu, X. Accelerated Healing in Asphalt Concrete via Laboratory Microwave Heating. J. Test. Eval. 2018, 48. [Google Scholar] [CrossRef]
- González, A.; Norambuena-Contreras, J.; Storey, L.; Schlangen, E. Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating. Materials (Basel) 2018, 159, 164–174. [Google Scholar] [CrossRef]
- Franesqui, M.A.; Yepes, J.; García-gonzález, C. Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves. Constr. Build. Mater. 2017, 149, 612–620. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T. Microwave processing: Fundamentals and applications. Compos. Part A Appl. Sci. Manuf. 1999, 30, 1055–1071. [Google Scholar] [CrossRef]
- Benedetto, A.; Calvi, A. A pilot study on microwave heating for production and recycling of road pavement materials. Constr. Build. Mater. 2013, 44, 351–359. [Google Scholar] [CrossRef]
- Meredith, R. Engineer’s Handbook of Industrial Microwave Heating; The Institution of Electrical Engineers: London, UK, 1998. [Google Scholar]
- Al-hdabi, A.; Al, H. Performance of Half Warm Rolled Asphalt mixtures. Constr. Build. Mater. 2018, 162, 48–56. [Google Scholar] [CrossRef]
- Lou, B.; Liu, Z.; Sha, A.; Jia, M.; Li, Y. Microwave absorption ability of steel slag and road performance of asphalt mixtures incorporating steel slag. Materials (Basel) 2020, 13, 663. [Google Scholar] [CrossRef] [Green Version]
- Metaxas, A.A.; Meredith, R.J. Industrial Microwave Heating; Peter Peregrinus: Stevenage, UK, 1983. [Google Scholar]
- Wang, H.; Zhang, Y.; Zhang, Y.; Feng, S.; Lu, G.; Cao, L. Laboratory and Numerical Investigation of Microwave Heating Properties of Asphalt Mixture. Materials (Basel) 2019, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Yu, X.; Dong, F. Evaluation of moisture susceptibility of foamed warm asphalt produced by water injection using surface free energy method. Constr. Build. Mater. 2017, 131, 138–145. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; An, D.; Ai, T.; Zhao, P. Laboratory investigation on deicing characteristics of asphalt mixtures using magnetite aggregate as microwave-absorbing materials. Constr. Build. Mater. 2016, 124, 589–597. [Google Scholar] [CrossRef]
- Skaf, M.; Manso, J.M.; Aragón, Á.; Fuente-alonso, J.A. EAF slag in asphalt mixes : A brief review of its possible re-use. Resour. Conserv. Recycl. 2017, 120, 176–185. [Google Scholar] [CrossRef]
- Liu, W.; Miao, P.H.; Wang, S.Y. Increasing microwave heating efficiency of asphalt-coated aggregates mixed with modified steel slag particles. J. Mater. Civ. Eng. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Wen, H.; Wu, S.; Bhusal, S. Performance Evaluation of Asphalt Mixes Containing Steel Slag Aggregate as a Measure to Resist Studded Tire Wear. J. Mater. Civ. Eng. 2016, 28. [Google Scholar] [CrossRef]
- Asi, I.M.; Qasrawi, H.Y.; Shalabi, F.I. Use of steel slag aggregate in asphalt concrete mixes. Can. J. Civ. Eng. 2007, 34, 902–911. [Google Scholar] [CrossRef]
- Ameri, M.; Behnood, A. Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Constr. Build. Mater. 2012, 26, 475–480. [Google Scholar] [CrossRef]
- Ameri, M.; Hesami, S.; Goli, H. Laboratory evaluation of warm mix asphalt mixtures containing electric arc furnace (EAF) steel slag. Constr. Build. Mater. 2013, 49, 611–617. [Google Scholar] [CrossRef]
- Sorlini, S.; Sanzeni, A.; Rondi, L. Reuse of steel slag in bituminous paving mixtures. J. Hazard. Mater. 2012, 209–210, 84–91. [Google Scholar] [CrossRef]
- Xie, J.; Chen, J.; Wu, S.; Lin, J.; Wei, W. Performance characteristics of asphalt mixture with basic oxygen furnace slag. Constr. Build. Mater. 2013, 38, 796–803. [Google Scholar] [CrossRef]
- Pasetto, M.; Giacomello, G.; Pasquini, E.; Canestrari, F. Effect of Warm Mix Chemical Additives on the Binder-Aggregate Bond Strength and High-Service Temperature Performance of Asphalt Mixes Containing Electric Arc Furnace Steel Slag. Int. J. Pavement Res. Technol. 2015, 15–16. [Google Scholar]
- Kavussi, A.; Qazizadeh, M.J. Fatigue characterization of asphalt mixes containing electric arc furnace (EAF) steel slag subjected to long-term aging. Constr. Build. Mater. 2014, 72, 158–166. [Google Scholar] [CrossRef]
- Hesami, S.; Ameri, M.; Goli, H.; Akbari, A. Laboratory investigation of moisture susceptibility of warm-mix asphalt mixtures containing steel slag aggregates. Int. J. Pavement Eng. 2014, 745–759. [Google Scholar] [CrossRef]
- Lizárraga, J.M.; Ramírez, A.; Díaz, P.; Marcobal, J.R.; Gallego, J. Short-term performance appraisal of half-warm mix asphalt mixtures containing high (70%) and total RAP contents (100%): From laboratory mix design to its full-scale implementation. Constr. Build. Mater. 2018, 170, 433–445. [Google Scholar] [CrossRef]
- Lizárraga, J.M.; Barco-carrión, A.J.; Ramírez, A.; Díaz, P.; Rubio, M.C. Mechanical performance assessment of half warm recycled asphalt mixes containing up to 100% RAP. Mater. Constr. 2017, 67, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bagamapadde, U.; Wahhab, H.-A.; Aiban, S. Optimization of Steel Slag Aggregates for Bituminous Mixes in Saudi Arabia. J. Mater. Civ. Eng. 1999, 11, 30–35. [Google Scholar] [CrossRef]
- Kavussi, A.; Karimi, M.M.; Ahmadi Dehaghi, E. Effect of moisture and freeze-thaw damage on microwave healing of asphalt mixes. Constr. Build. Mater. 2020, 254, 119268. [Google Scholar] [CrossRef]
- Liu, Q.; Schlangen, E.; García, Á.; Ven, M. Van De Induction heating of electrically conductive porous asphalt concrete. Constr. Build. Mater. 2010, 24, 1207–1213. [Google Scholar] [CrossRef]
- Kim, B.; Roque, R. Evaluation of Healing Property of Asphalt Mixtures. Transp. Res. Rec. J. Transp. Res. Board 2006, 1970, 84–91. [Google Scholar] [CrossRef]
- Shen, S.; Sutharsan, T. Quantification of Cohesive Healing of Asphalt Binder and its Impact Factors Based on Dissipated Energy Analysis. Road Mater. Pavement Des. 2011, 37–41. [Google Scholar] [CrossRef]
- García, Á. Self-healing of open cracks in asphalt mastic. Fuel 2012, 93, 264–272. [Google Scholar] [CrossRef]
- Spanish Ministry of Public Works. General Technical Specifications for Roads and Bridges in Spain; Art. 542 of PG-3, Ministry of Development. Liteam editions; Ministry of Development: Madrid, Spain, 2015.
- AENOR Asociación Española de Normalización y Certificación. UNE-EN 12697 31. Bituminous Mixtures-Test Methods for Hot Mix Asphalt. Part 31. Specimen Preparation by Gyratory Compactor; British Standards Institution: Madrid, Spain, 2007. [Google Scholar]
- Gallego, J.; Miguel, A.; Contreras, V.; Páez, A. Heating asphalt mixtures with microwaves to promote self-healing. Constr. Build. Mater. 2013, 42, 1–4. [Google Scholar] [CrossRef]
- Teran Hidalgo, S.J.; Wu, M.C.; Engel, S.M.; Kosorok, M.R. Goodness-of-fit test for nonparametric regression models: Smoothing spline ANOVA models as example. Comput. Stat. Data Anal. 2018, 122, 135–155. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Elliott, A.C.; Hynan, L.S. A SAS® macro implementation of a multiple comparison post hoc test for a Kruskal-Wallis analysis. Comput. Methods Programs Biomed. 2011, 102, 75–80. [Google Scholar] [CrossRef]
- Al-Negheimish, A.; Al-Sugair, F.; Al-Zaid, R. Utilization of local steelmaking slag in concrete. J. King Saud Univ. Sci. 1997, 9, 39–55. [Google Scholar] [CrossRef]
- Spanish Ministry of Public Works. General Technical Specifications for Maintenance and Rehabilitation Works in Road Pavements. Circular Order—OC 40/2017 on Pavements Recycling and Bituminous Pavements; Ministry of Development: Madrid, Spain, 2017.
- Gao, J.; Sha, A.; Wang, Z.; Tong, Z.; Liu, Z. Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing. J. Clean. Prod. 2017, 152, 429–442. [Google Scholar] [CrossRef]
- Gallego, J.; Del Val, M.A.; Contreras, V.; Páez, A. Use of additives to improve the capacity of bituminous mixtures to be heated by means of microwaves. Mater. Construcción 2017, 67, 110. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Chen, Z.; Pang, L.; Wu, S. Implementation of modified pull-off test by UTM to investigate bonding characteristics of bitumen and basic oxygen furnace slag (BOF). Constr. Build. Mater. 2014, 57, 61–68. [Google Scholar] [CrossRef]
- Sun, D.; Yu, F.; Li, L.; Lin, T.; Zhu, X.Y. Effect of chemical composition and structure of asphalt binders on self-healing. Constr. Build. Mater. 2017, 133, 495–501. [Google Scholar] [CrossRef]
- Kim, Y.; Little, D.; Benson, F. Chemical and mechanical evaluation on healing mechanism of asphalt concrete. J. Assoc. Asph. Paving Technol. 1990, 59, 240–275. [Google Scholar]
- Endesa Company. Available online: https://comparadorluz.com/tarifas/precio-kwh (accessed on 23 April 2020).
Gyrations (Ni) | EAFS (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | |||||||
T25 °C | T60 °C | T80 °C | T25 °C | T60 °C | T80 °C | T25 °C | T60 °C | T80 °C | |
0 | |||||||||
25 | |||||||||
50 |
Sieve Size (mm) | 8 | 4 | 2 | 0.5 | 0.25 | 0.063 |
---|---|---|---|---|---|---|
Passing (%) | 100 | 96.29 | 49.64 | 15.40 | 9.97 | 5.26 |
Chemical Composition | Values (%) |
---|---|
Al2O3 | 8.81 |
Cao | 24.28 |
Fe2O3 | 40.49 |
MgO | 3.02 |
MnO | 4.72 |
SiO2 | 12.60 |
P2O5 | 0.36 |
Other substances | 5.72 |
Properties | Unit | Test Method | Value |
---|---|---|---|
Maximum density | g/cm3 | EN 12697-6:2012 | 2.443 |
Bitumen content | %, o/RAP | EN 12697-1:2012 | 4.89 |
Penetration test | 0.1 dmm | EN 1426:2015 | 11 |
Softening point | °C | EN 1427:2015 | 80.3 |
Mixture Properties | Test Method | Emulsion Content (%, o/RAP) | |||
---|---|---|---|---|---|
2.0% | 2.5% | 3.0% | 3.5% | ||
Maximum density, (g/cm3) | EN 12697-5:2012 | 2419 | 2418 | 2414 | 2395 |
Apparent density, by SSD, (g/cm3) | EN 12697-6:2012 | 2269 | 2292 | 2313 | 2339 |
Geometric density (g/cm3) | EN 12697-6:2012 | 2231 | 2258 | 2277 | 2290 |
Air voids, Vm, (%) | EN 12697-8:2003 | 6.1 | 5.2 | 4.2 | 3.3 |
Sieve Size (mm) | 100% RAP 0% EAFS | 98% RAP + 2% EAFS | 96% RAP + 4% EAFS | 94% RAP + 6% EAFS | 92% RAP + 8% EAFS | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mass | Mass (g) | Mass (g) | Mass (g) | Mass (g) | |||||||
(%) | (g) | RAP | EAFS | RAP | EAFS | RAP | EAFS | RAP | EAFS | ||
20 | 12.5 | 9.3 | 93 | 93 | – | 93 | – | 93 | – | 93 | – |
12.8 | 8 | 9.8 | 98 | 98 | – | 98 | – | 98 | – | 98 | – |
8 | 4 | 30.3 | 303 | 303 | – | 303 | – | 303 | – | 303 | – |
4 | 2 | 13.8 | 138 | 123 | 22.5 | 113 | 37.5 | 138 | 60 | 88 | 75 |
2 | 0.5 | 16.2 | 162 | 159.8 | 3.3 | 155 | 9.9 | 162 | 13.2 | 148.8 | 19.8 |
0.5 | 0 | 20.6 | 206 | 203.2 | 4.2 | 198 | 12.6 | 206 | 16.8 | 189.2 | 25.2 |
Weight (g) | 100 | 1000 | 980 | 30 | 960 | 60 | 940 | 90 | 920 | 120 | |
Emulsion (%/o, aggregates) | – | 2.60 | 2.65 | – | 2.69 | – | 2.74 | – | 2.78 | – | |
Total weight (g) | – | 1026 | 1037 | 1047 | 1057 | 1068 |
Healing Rates (HR) | EAFS Content (%) | 25 Gyrations | 50 Gyrations | ||||||
---|---|---|---|---|---|---|---|---|---|
Energy | ΔEc * | Price | Energy | ΔEc | Price | ||||
(kWh/kg) | (kWh/kg) | ΔEs ** (%) | (kWh/kg) | (kWh/kg) | (kWh/kg) | ΔEs (%) | (kWh/kg) | ||
HR = 75% (Stiffmes) | 0% | 0.0314 | 0.0178 | 56.69 | 0.003762 | 0.0277 | 0.0136 | 49.10 | 0.003318 |
4% | 0.0158 | 0.0022 | 13.92 | 0.001893 | 0.0162 | 0.0021 | 12.96 | 0.001941 | |
8% | 0.0136 | – | – | 0.001629 | 0.0141 | – | – | 0.001689 | |
HR = 100% (Stiffmes) | 0% | 0.0479 | 0.0294 | 61.38 | 0.005738 | 0.0407 | 0.0204 | 50.12 | 0.004876 |
4% | 0.0241 | 0.0056 | 23.24 | 0.002887 | 0.0242 | 0.0039 | 16.12 | 0.002899 | |
8% | 0.0185 | – | – | 0.002216 | 0.0203 | – | – | 0.002432 | |
HR= 75% (ITS) | 0% | 0.0278 | 0.0178 | 64.03 | 0.003330 | 0.0182 | 0.0097 | 53.30 | 0.002180 |
4% | 0.0121 | 0.0021 | 17.36 | 0.001450 | 0.0133 | 0.0048 | 36.09 | 0.001593 | |
8% | 0.0100 | – | – | 0.001298 | 0.0085 | – | – | 0.001018 | |
HR=100% (ITS) | 0% | 0.0642 | 0.0442 | 68.85 | 0.007691 | 0.0342 | 0.0142 | 41.52 | 0.004097 |
4% | 0.0261 | 0.0061 | 23.37 | 0.003127 | 0.0261 | 0.0061 | 23.37 | 0.003127 | |
8% | 0.0200 | – | – | 0.002396 | 0.0200 | – | – | 0.002396 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lizárraga, J.M.; Gallego, J. Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment. Materials 2020, 13, 2502. https://doi.org/10.3390/ma13112502
Lizárraga JM, Gallego J. Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment. Materials. 2020; 13(11):2502. https://doi.org/10.3390/ma13112502
Chicago/Turabian StyleLizárraga, José Manuel, and Juan Gallego. 2020. "Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment" Materials 13, no. 11: 2502. https://doi.org/10.3390/ma13112502
APA StyleLizárraga, J. M., & Gallego, J. (2020). Self-Healing Analysis of Half-Warm Asphalt Mixes Containing Electric Arc Furnace (EAF) Slag and Reclaimed Asphalt Pavement (RAP) Using a Novel Thermomechanical Healing Treatment. Materials, 13(11), 2502. https://doi.org/10.3390/ma13112502