Effect of pH Variations on the Yield Stress of Calcium Bentonite Slurry Treated with pH-Responsive Polymer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Bentonite
2.1.2. Polyacrylamide (PAM)
2.2. Preparation of PAM Treated Clay
2.3. Yield Stress Measurement
3. Results and Discussions
3.1. Effect of PAM Treatment on Stress–Time Curve
3.2. Effect of Solid Content on the Yield Stress
3.3. Effect of pH Variations on the Yield Stress
4. Summary and Conclusions
- (1)
- The peak stress was not observed in the stress–time curve of the treated bentonite, because the polymer bridging between clay particles can prevent slips and rearrangements between particles after reaching τy.
- (2)
- τy for the treated clay was higher than that for untreated clay at a given VF, because van der Walls attraction dominates electrostatic repulsion in the case of treated clay. In addition, polymer bridging may act as flexible reinforcement and may provide additional shear resistance, leading to increases in τy for the treated clay.
- (3)
- An increase in τy with decreasing pH can be accelerated in low pH conditions due to the combined effects of pH (i.e., formation of flocculated structure) and electrolyte concentration (i.e., formation of dense structure).
- (4)
- The varying conformational states of PAM with pH significantly influences the τy of tested calcium bentonite. Therefore, the treated clay shows greater increases in normalized τy than untreated clay as the pH decreases from 8.4 to lower values.
Author Contributions
Funding
Conflicts of Interest
References
- Egloffstein, T. Natural bentonites—influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotext. Geomembr. 2001, 19, 427–444. [Google Scholar] [CrossRef]
- Murray, H. Industrial clays case study. Min. Miner. Sustain. Dev. 2002, 64, 1–9. [Google Scholar]
- Ece, Ö.I.; Güngör, N.; Alemdar, A. Influences of Electrolytes, Polymers and a Surfactant on Rheological Properties of Bentonite–Water Systems. J. Incl. Phenom. Macrocycl. Chem. 1999, 33, 155–168. [Google Scholar] [CrossRef]
- Gleason, M.H.; Daniel, D.E.; Eykholt, G.R. Calcium and Sodium Bentonite for Hydraulic Containment Applications. J. Geotech. Geoenvironmental Eng. 1997, 123, 438–445. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Van Olphen, H. Introduction to Clay Colloid Chemistry; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Du, M.; Liu, J.; Clode, P.L.; Leong, Y.-K. Microstructure and rheology of bentonite slurries containing multiple-charge phosphate-based additives. Appl. Clay Sci. 2019, 169, 120–128. [Google Scholar] [CrossRef]
- Goh, R.; Leong, Y.; Lehane, B. Bentonite slurries—zeta potential, yield stress, adsorbed additive and time-dependent behaviour. Rheol. Acta 2010, 50, 29–38. [Google Scholar] [CrossRef]
- Yang, Y.; Du, Y.-J.; Reddy, K.; Fan, R. Effect of Phosphate Dispersant Amendment on Workability of Ca-Bentonite Slurry for Slurry Trench Cutoff-Wall Construction. Indian Geotech. J. 2017, 47, 445–452. [Google Scholar] [CrossRef]
- Yildiz, N.; Sarikaya, Y.; Çalimli, A.; Çalımlı, A. The effect of the electrolyte concentration and pH on the rheological properties of the original and the Na2CO3-activated Kütahya bentonite. Appl. Clay Sci. 1999, 14, 319–327. [Google Scholar] [CrossRef]
- Bonilla-Blancas, A.E.; Romero-Ibarra, I.; Vazquez-Arenas, J.G.; Sanchez-Solis, A.; Manero, O.; Alvarez-Ramirez, J. Molecular interactions arising in polyethylene-bentonite nanocomposites. J. Appl. Polym. Sci. 2018, 136. [Google Scholar] [CrossRef]
- Axelsson, M.; Gustafson, G.; Fransson, A. Stop mechanism for cementitious grouts at different water-to-cement ratios. Tunn. Undergr. Space Technol. 2009, 24, 390–397. [Google Scholar] [CrossRef]
- Liu, J.; Neretnieks, I. Physical and Chemical Stability of the Bentonite Buffer; Royal Institute of Technology: Stockholm, Sweden, 2006. [Google Scholar]
- Yoon, J.; El Mohtar, C. Evaluation of Time-Dependent Yield Stress Using Dynamic Rheological Property of Bentonite Suspensions. Geotech. Test. J. 2013, 37, 20130075. [Google Scholar] [CrossRef] [Green Version]
- Bingham, E.C. Fluidity and Plasticity; McGraw-Hill: New York, NY, USA, 1922. [Google Scholar]
- Alther, G.R. The effect of the exchangeable cations on the physico-chemical properties of Wyoming bentonites. Appl. Clay Sci. 1986, 1, 273–284. [Google Scholar] [CrossRef]
- Brandenburg, U.; Lagaly, G. Rheological properties of sodium montmorillonite dispersions. Appl. Clay Sci. 1988, 3, 263–279. [Google Scholar] [CrossRef]
- Chen, J.S. Rheological Behavior of Na-Montmorillonite Suspensions at Low Electrolyte Concentration. Clays Clay Miner. 1990, 38, 57–62. [Google Scholar] [CrossRef]
- Lagaly, G. Principles of flow of kaolin and bentonite dispersions. Appl. Clay Sci. 1989, 4, 105–123. [Google Scholar] [CrossRef]
- Güngör, N.; Ece, Ö. Isik Effect of the adsorption of non-ionic polymer poly(vinyl)pyrolidone on the rheological properties of Na-activated bentonite. Mater. Lett. 1999, 39, 1–5. [Google Scholar] [CrossRef]
- Güngör, N.; Karaoğlan, S. Interactions of polyacrylamide polymer with bentonite in aqueous systems. Mater. Lett. 2001, 48, 168–175. [Google Scholar] [CrossRef]
- Işçi, S.; Ünlü, C.H.; Atıcı, O.G.; Güngör, N. Rheology and structure of aqueous bentonite-polyvinyl alcohol dispersions. Bull. Mater. Sci. 2006, 29, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Theng, B.K.G. Formation and Properties of Clay-Polymer Complexes; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- ASTM-D854. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- ASTM-D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- BS-1377. Methods of Test for Soils for Civil Engineering Purposes; British Standards Institution: London, UK, 1990. [Google Scholar]
- ASTM-D2487. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Santamarina, J.C.; Klein, K.A.; Wang, Y.; Prencke, E. Specific surface: Determination and relevance. Can. Geotech. J. 2002, 39, 233–241. [Google Scholar] [CrossRef]
- Chapman, H. Cation-exchange capacity. In Methods of Soil Analysis (Number 9 in the Series Agronomy), Part 2; Black, A., Ed.; American Institute of Agronomy: Madison, WI, USA, 1965; pp. 891–901. [Google Scholar]
- Besra, L.; Sengupta, D.; Roy, S.; Ay, P. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension. Sep. Purif. Technol. 2004, 37, 231–246. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Van Meerbeek, A. Chapter 10.3 Clay Mineral– and Organoclay–Polymer Nanocomposite. In Developments in Clay Science; Elsevier BV: Amsterdam, The Netherlands, 2006; Volume 1, pp. 583–621. [Google Scholar]
- Barvenik, F.W. Polyacrylamide Characteristics Related to Soil Applications. Soil Sci. 1994, 158, 235–243. [Google Scholar] [CrossRef]
- Kim, S.; Palomino, A.M. Factors influencing the synthesis of tunable clay–polymer nanocomposites using bentonite and polyacrylamide. Appl. Clay Sci. 2011, 51, 491–498. [Google Scholar] [CrossRef]
- ASTM-D5890. Standard Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Alderman, N.; Meeten, G.; Sherwood, J. Vane rheometry of bentonite gels. J. Non-Newton. Fluid Mech. 1991, 39, 291–310. [Google Scholar] [CrossRef]
- Dzuy, N.Q. Yield Stress Measurement for Concentrated Suspensions. J. Rheol. 1983, 27, 321–349. [Google Scholar] [CrossRef]
- Liddel, P.V.; Boger, D.V. Yield stress measurements with the vane. J. Non-Newton. Fluid Mech. 1996, 63, 235–261. [Google Scholar] [CrossRef]
- Yoon, J.; El Mohtar, C. Disturbance Effect on Time-Dependent Yield Stress Measurement of Bentonite Suspensions. Geotech. Test. J. 2012, 36, 20120082. [Google Scholar] [CrossRef] [Green Version]
- Halder, B.K.; Palomino, A.M.; Reddy, K.; Yesiller, N.; Zekkos, D.; Farid, A.; De, A. The Shear Strength of “Tunable” Clay-Polymer Composite under Various Ionic Concentrations. Geo-Chicago 2016 2016, 61–72. [Google Scholar] [CrossRef]
- Kim, S.; Palomino, A.M. Polyacrylamide-treated kaolin: A fabric study. Appl. Clay Sci. 2009, 45, 270–279. [Google Scholar] [CrossRef]
- Mpofu, P.; Addai-Mensah, J.; Ralston, J. Investigation of the effect of polymer structure type on flocculation, rheology and dewatering behaviour of kaolinite dispersions. Int. J. Miner. Process. 2003, 71, 247–268. [Google Scholar] [CrossRef]
- Locat, J.; Demers, D. Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Can. Geotech. J. 1988, 25, 799–806. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Levigneur, A. Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater. Struct. 2016, 49, 4647–4655. [Google Scholar] [CrossRef]
- Kelessidis, V.; Maglione, R. Yield stress of water–bentonite dispersions. Colloids Surf. A Physicochem. Eng. Asp. 2008, 318, 217–226. [Google Scholar] [CrossRef]
- Kang, X.; Cao, J.; Bate, B. Large-Strain Strength of Polymer-Modified Kaolinite and Fly Ash–Kaolinite Mixtures. J. Geotech. Geoenvironmental Eng. 2019, 145, 04018106. [Google Scholar] [CrossRef]
- Spagnoli, G.; Rubinos, D.; Stanjek, H.; Fernandez-Steeger, T.; Feinendegen, M.; Azzam, R. Undrained shear strength of clays as modified by pH variations. Bull. Int. Assoc. Eng. Geol. 2011, 71, 135–148. [Google Scholar] [CrossRef]
Component | SiO2 | Al2O3 | Fe2O3 a | CaO | K2O | MgO | Na2O | TiO2 | MnO | P2O5 | LOI b |
---|---|---|---|---|---|---|---|---|---|---|---|
wt.% composition | 65.06 | 15.43 | 3.94 | 2.33 | 2.06 | 1.28 | 1.24 | 0.52 | 0.11 | 0.09 | 6.77 |
Sample | Gs | LL [%] | PL [%] | Sa [m2/g] | pH | CEC [cmol/kg] | USCS |
---|---|---|---|---|---|---|---|
Untreated | 2.51 | 86.76 | 35.83 | 260.56 | 8.48 | 89.65 | CH |
Treated | 2.47 | 121.53 | 38.10 | 263.62 | 8.46 | 89.21 | CH |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, H.; Choi, Y.; Lee, W.; Lee, C. Effect of pH Variations on the Yield Stress of Calcium Bentonite Slurry Treated with pH-Responsive Polymer. Materials 2020, 13, 2525. https://doi.org/10.3390/ma13112525
Choo H, Choi Y, Lee W, Lee C. Effect of pH Variations on the Yield Stress of Calcium Bentonite Slurry Treated with pH-Responsive Polymer. Materials. 2020; 13(11):2525. https://doi.org/10.3390/ma13112525
Chicago/Turabian StyleChoo, Hyunwook, Youngmin Choi, Woojin Lee, and Changho Lee. 2020. "Effect of pH Variations on the Yield Stress of Calcium Bentonite Slurry Treated with pH-Responsive Polymer" Materials 13, no. 11: 2525. https://doi.org/10.3390/ma13112525
APA StyleChoo, H., Choi, Y., Lee, W., & Lee, C. (2020). Effect of pH Variations on the Yield Stress of Calcium Bentonite Slurry Treated with pH-Responsive Polymer. Materials, 13(11), 2525. https://doi.org/10.3390/ma13112525