“Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica
Abstract
:1. Introduction
2. Metabolic Insertion of Diatomaceous Biosilica with Titanium and Germanium Ions
2.1. Metabolic Insertion of Diatomaceous Biosilica with Titanium Ions
2.2. Metabolic Insertion of Diatomaceous Biosilica with Germanium Ions
3. Metabolic Insertion of Other Metals and Semimetals Ions
3.1. Doping of Biosilica with Aluminium Ions
3.2. Doping of Biosilica with Nickel Ions
3.3. Biosilica Doping with Europium Ions
3.4. Doping of Biosilica with Calcium Ions
3.5. Doping of Biosilica with Zirconium and Tin Ions
3.6. Biosilica Doping with Zinc and Iron Oons
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gross, M. The mysteries of the diatoms. Curr. Biol. 2012, 22, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Görlich, S.; Pawolski, D.; Zlotnikov, I.; Kröger, N. Control of biosilica morphology and mechanical performance by the conserved diatom gene Silicanin-1. Commun. Biol. 2019, 2, 245. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.K.; Hildebrand, M. A self-propagating system for Ge incorporation into nanostructured silica. Chem. Commun. 2008, 4495–4497. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.Y.; Wang, Y.; Cai, J.; Pan, J.F.; Jiang, X.G.; Jiang, Y.G. Bio-manufacturing technology based on diatom micro- and nanostructure. Chin. Sci. Bull. 2012, 57, 3836–3849. [Google Scholar] [CrossRef] [Green Version]
- Mann, D.G.; Vanormelingen, P. An inordinate fondness the number, distributions, and origins of diatom species. J. Eukaryot. Microbiol. 2013, 60, 414–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.K.; Seibert, M. Prospects for commercial production of diatoms. Biotechnol. Biofuels 2017, 10, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popovich, C.A.; Pistonesi, M.; Hegel, P.; Constenla, D.; Bielsa, G.B.; Martín, L.A.; Damiani, M.C.; Leonardi, P.I. Unconventional alternative biofuels: Quality assessment of biodiesel and its blends from marine diatom Navicula cincta. Algal Res. 2019, 39, 101438. [Google Scholar] [CrossRef]
- Fu, W.; Nelson, D.R.; Mystikou, A.; Daakour, S.; Salehi-Ashtiani, K. Advances in microalgal research and engineering development. Curr. Opin. Biotechnol. 2019, 59, 157–164. [Google Scholar] [CrossRef]
- Sasirekha, R.; Sheena, T.S.; Anitha, R.; Santhanam, P.; Kulandaivel, J. Characterizations and analysis of genus Amphora diatom frustules: A promising biomaterial. Bioinspired Biomim. Nanobiomater. 2019, 8, 224–230. [Google Scholar] [CrossRef]
- Panwar, V.; Dutta, T. Diatom Biogenic Silica as a Felicitous Platform for Biochemical Engineering: Expanding Frontiers. ACS Appl. Bio Mater. 2019, 2, 2295–2316. [Google Scholar] [CrossRef]
- Maher, S.; Maher, S.; Aw, M.S.; Losic, D. Diatom Silica for Biomedical Applications. Diatoms Fundam. Appl. 2019, 511–536. [Google Scholar] [CrossRef]
- Vinayak, V.; Joshi, K.B.; Sarma, P.M. DiafuelTM (Diatom Biofuel) vs Electric Vehicles, a Basic Comparison: A High Potential Renewable Energy Source to Make India Energy Independent. In Diatoms: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2019; pp. 537–582. [Google Scholar]
- Gordon, R.; Merz, C.R.; Gurke, S.; Schoefs, B. Bubble Farming: Scalable Microcosms for Diatom Biofuel and the Next Green Revolution. Diatoms Fundam. Appl. 2019, 583–654. [Google Scholar] [CrossRef]
- Vinayak, V.; Gautam, S. Diatoms in Forensics: A Molecular Approach to Diatom Testing in Forensic Science. Diatoms Fundam. Appl. 2019, 435–470. [Google Scholar] [CrossRef]
- Gordon, R.; Drum, R.W. The Chemical Basis of Diatom Morphogenesis. Int. Rev. Cytol. 1994, 150, 243–372. [Google Scholar] [CrossRef]
- Gordon, R.; Losic, D.; Tiffany, M.A.; Nagy, S.S.; Sterrenburg, F.A.S. The Glass Menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol. 2009, 27, 116–127. [Google Scholar] [CrossRef]
- Bozarth, A.; Maier, U.G.; Zauner, S. Diatoms in biotechnology: Modern tools and applications. Appl. Microbiol. Biotechnol. 2009, 82, 195–201. [Google Scholar] [CrossRef]
- Nassif, N.; Livage, J. From diatoms to silica-based biohybrids. Chem. Soc. Rev. 2011, 40, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Basharina, T.N.; Danilovtseva, E.N.; Zelinskiy, S.N.; Klimenkov, I.V.; Likhoshway, Y.V.; Annenkov, V.V. The Effect of Titanium, Zirconium and Tin on the Growth of Diatom Synedra acus and Morphology of Its Silica Valves. Silicon 2012, 4, 239–249. [Google Scholar] [CrossRef]
- Mishra, M.; Arukha, A.P.; Bashir, T.; Yadav, D.; Prasad, G.B.K.S. All new faces of diatoms: Potential source of nanomaterials and beyond. Front. Microbiol. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Athanasakoglou, A.; Kampranis, S.C. Diatom isoprenoids: Advances and biotechnological potential. Biotechnol. Adv. 2019, 37. [Google Scholar] [CrossRef]
- Martínez-Carmona, M.; Gun’ko, Y.K.; Vallet-Regí, M. Mesoporous silica materials as drug delivery: “the nightmare” of bacterial infection. Pharmaceutics 2018, 10, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uthappa, U.T.; Brahmkhatri, V.; Sriram, G.; Jung, H.Y.; Yu, J.; Kurkuri, N.; Aminabhavi, T.M.; Altalhi, T.; Neelgund, G.M.; Kurkuri, M.D. Nature engineered diatom biosilica as drug delivery systems. J. Control. Release 2018, 281, 70–83. [Google Scholar] [CrossRef] [PubMed]
- De Tommasi, E.; Gielis, J.; Rogato, A. Diatom Frustule Morphogenesis and Function: A Multidisciplinary Survey. Mar. Genom. 2017, 35, 1–18. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, L.; Rotiroti, L.; De Stefano, M.; Lamberti, A.; Lettieri, S.; Setaro, A.; Maddalena, P. Marine diatoms as optical biosensors. Biosens. Bioelectron. 2009, 24, 1580–1584. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.J. Miniview: Diatoms, temperature and climatic change. Eur. J. Phycol. 2000, 35, 307–314. [Google Scholar] [CrossRef]
- Townley, H.E.; Parker, A.R.; White-Cooper, H. Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv. Funct. Mater. 2008, 18, 369–374. [Google Scholar] [CrossRef]
- De Stefano, L.; Maddalena, P.; Moretti, L.; Rea, I.; Rendina, I.; De Tommasi, E.; Mocella, V.; De Stefano, M. Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices Microstruct. 2009, 46, 84–89. [Google Scholar] [CrossRef]
- He, J.; Chen, D.; Li, Y.; Shao, J.; Xie, J.; Sun, Y.; Yan, Z.; Wang, J. Diatom-templated TiO2 with enhanced photocatalytic activity: Biomimetics of photonic crystals. Appl. Phys. A Mater. Sci. Process. 2013, 113, 327–332. [Google Scholar] [CrossRef]
- Nowak, A.P.; Sprynskyy, M.; Brzozowska, W.; Lisowska-Oleksiak, A. Electrochemical behavior of a composite material containing 3D-structured diatom biosilica. Algal Res. 2019, 41, 101538. [Google Scholar] [CrossRef]
- Norberg, A.N.; Wagner, N.P.; Kaland, H.; Vullum-Bruer, F.; Svensson, A.M. Silica from diatom frustules as anode material for Li-ion batteries. RSC Adv. 2019, 9, 41228–41239. [Google Scholar] [CrossRef] [Green Version]
- Toster, J.; Iyer, K.S.; Xiang, W.; Rosei, F.; Spiccia, L.; Raston, C.L. Diatom frustules as light traps enhance DSSC efficiency. Nanoscale 2013, 5, 873–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, J.; Jiang, Y.; Jiang, X.; Zhang, D. Preparation of biosilica structures from frustules of diatoms and their applications: Current state and perspectives. Appl. Microbiol. Biotechnol. 2013, 97, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Sweetman, M.J.; Kant, K.; Skinner, W.; Losic, D.; Nann, T.; Voelcker, N.H. Silicon diatom frustules as nanostructured photoelectrodes. Chem. Commun. 2014, 50, 10441–10444. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.R.; Jiang, Y.J.; Liou, R.L.; Chen, C.H.; Chen, Y.A.; Tsai, C.H. Enhancing the efficiency of dye-sensitized solar cells by adding diatom frustules into TiO2 working electrodes. Appl. Surf. Sci. 2015, 347, 64–72. [Google Scholar] [CrossRef]
- Lin, K.B.; Shen, T.W.; Su, Y.H. Silicon-Based Solar Cells: Emergent Upconversion Sustainable Micro-Optical Trapping Device (Part. Part. Syst. Charact. 7/2019). Part. Part. Syst. Charact. 2019, 36, 1970017. [Google Scholar] [CrossRef] [Green Version]
- Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ. Sci. 2011, 4, 3930–3941. [Google Scholar] [CrossRef]
- Bao, Z.; Weatherspoon, M.R.; Shian, S.; Cai, Y.; Graham, P.D.; Allan, S.M.; Ahmad, G.; Dickerson, M.B.; Church, B.C.; Kang, Z.; et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 2007, 446, 172–175. [Google Scholar] [CrossRef]
- Kroth, P. Molecular biology and the biotechnological potential of diatoms. Adv. Exp. Med. Biol. 2007, 616, 23–33. [Google Scholar] [CrossRef]
- Leonardo, S.; Prieto-Simón, B.; Campàs, M. Past, present and future of diatoms in biosensing. TrAC Trends Anal. Chem. 2016, 79, 276–285. [Google Scholar] [CrossRef]
- Umemura, K.; Gao, Y.; Nishikawa, T. Preparation of photocatalyst using diatom frustules by liquid phase deposition method. J. Nanosci. Nanotechnol. 2010, 10, 4883–4888. [Google Scholar] [CrossRef]
- Huang, W.; Daboussi, F. Genetic and metabolic engineering in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Lopez, P.J.; Rosengarten, G. Diatoms: Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 2011, 136, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Irimia-Vladu, M.D.; Glowacki, E.S.; Sariciftci, N.; Bauer, S.; Ragni, R.; Cicco, S.R.; Vona, D.; Farinola, G.M. Nanostructured Silica from Diatoms Microalgae: Smart Materials for Photonics and Electronics. Green Mater. Electron. 2017, 287–313. [Google Scholar] [CrossRef]
- Terracciano, M.; De Stefano, L.; Rea, I. Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics 2018, 10, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandra, T.V.; Mahapatra, D.M.; Karthick, B.; Gordon, R. Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 2009, 48, 8769–8788. [Google Scholar] [CrossRef]
- Zglobicka, I.; Chmielewska, A.; Topal, E.; Kutukova, K.; Gluch, J.; Krüger, P.; Kilroy, C.; Swieszkowski, W.; Kurzydlowski, K.J.; Zschech, E. 3D Diatom–Designed and Selective Laser Melting (SLM) Manufactured Metallic Structures. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Furlani, M.; Albinsson, I.; Wulff, A.; Mellander, B.E. Diatom frustules enhancing the efficiency of gel polymer electrolyte based dye-sensitized solar cells with multilayer photoelectrodes. Nanoscale Adv. 2020, 2, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Kröger, N.; Dubey, N.C.; Kumari, E. CHAPTER 6: Immobilization of Proteins on Diatom Biosilica. In RSC Nanoscience and Nanotechnology; Royal Society of Chemistry: London, UK, January 2018; Volume 2018, pp. 126–149. ISBN 9781782624585. [Google Scholar]
- Ragni, R.; Cicco, S.; Vona, D.; Leone, G.; Farinola, G.M. Biosilica from diatoms microalgae: Smart materials from bio-medicine to photonics. J. Mater. Res. 2017, 32, 279–291. [Google Scholar] [CrossRef]
- Köhler, L.; Machill, S.; Werner, A.; Selzer, C.; Kaskel, S.; Brunner, E. Are Diatoms “Green” Aluminosilicate Synthesis Microreactors for Future Catalyst Production? Molecules 2017, 22, 2232. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Gutu, T.; Chang, C.H.; Jiao, J.; Rorrer, G.L. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. ACS Nano 2008, 2, 1296–1304. [Google Scholar] [CrossRef]
- Gale, D.K.; Jeffryes, C.; Gutu, T.; Jiao, J.; Chang, C.H.; Rorrer, G.L. Thermal annealing activates amplified photoluminescence of germanium metabolically doped in diatom biosilica. J. Mater. Chem. 2011, 21, 10658–10665. [Google Scholar] [CrossRef]
- Ali, D.M.; Divya, C.; Gunasekaran, M.; Thajuddin, N. Biosynthesis and Characterization of Silicon-Germanium Oxide Nanocomposite By Diatom. Dig. J. Nanomater. Biostruct. 2011, 6, 117–120. [Google Scholar]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Metabolic Insertion of Nanostructured TiO2 into the Patterned Biosilica of the Diatom. ACS Nano 2008, 2, 2103–2112. [Google Scholar] [CrossRef] [PubMed]
- Van Eynde, E.; Hu, Z.Y.; Tytgat, T.; Verbruggen, S.W.; Watté, J.; Van Tendeloo, G.; Van Driessche, I.; Blust, R.; Lenaerts, S. Diatom silica-titania photocatalysts for air purification by bio-accumulation of different titanium sources. Environ. Sci. Nano 2016, 3, 1052–1061. [Google Scholar] [CrossRef]
- Chauton, M.S.; Skolem, L.M.B.; Olsen, L.M.; Vullum, P.E.; Walmsley, J.; Vadstein, O. Titanium uptake and incorporation into silica nanostructures by the diatom Pinnularia sp. (Bacillariophyceae). J. Appl. Phycol. 2015, 27, 777–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skolem, L.M.B. Biosynthesis and Characterization of Ti- Doped Silica-Based Nanostructures Formed by the Diatoms Pinnularia sp. and Coscinodiscus wailesii; Norwegian University of Science and Technology: Trondheim, Norway, 2011; Volume 801. [Google Scholar]
- Maeda, Y.; Niwa, Y.; Tang, H.; Kisailus, D.; Yoshino, T.; Tanaka, T. Development of Titania-Integrated Silica Cell Walls of the Titanium-Resistant Diatom, Fistulifera solaris. ACS Appl. Bio Mater. 2018, 1, 2021–2029. [Google Scholar] [CrossRef]
- Lang, Y.; Monte, F.D.; Rodriguez, B.J.; Dockery, P.; Finn, D.P.; Pandit, A. Integration of TiO2 into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep. 2013, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rorrer, G.L.; Chang, C.H.; Liu, S.H.; Jeffryes, C.; Jiao, J.; Hedberg, J.A. Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. J. Nanosci. Nanotechnol. 2005, 5, 41–49. [Google Scholar] [CrossRef]
- Jeffryes, C.; Gutu, T.; Jiao, J.; Rorrer, G.L. Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mater. Sci. Eng. C 2008, 28, 107–118. [Google Scholar] [CrossRef]
- Townley, H.E.; Woon, K.L.; Payne, F.P.; White-Cooper, H.; Parker, A.R. Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate. Nanotechnology 2007, 18, 14–19. [Google Scholar] [CrossRef]
- Gannavarapu, K.P.; Ganesh, V.; Thakkar, M.; Mitra, S.; Dandamudi, R.B. Nanostructured Diatom-ZrO2 composite as a selective and highly sensitive enzyme free electrochemical sensor for detection of methyl parathion. Sens. Actuators B Chem. 2019, 288, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Vona, D.; Lo Presti, M.; Urbano, L.; Cicco, S.; Gristina, R.; Palumbo, F.; Ragni, R.; Farinola, G.M. Ca2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: Investigation on Saos-2 biocompatibility. Mater. Res. Soc. 2017, 2, 1047–1058. [Google Scholar] [CrossRef]
- Li, J.; Han, J.; Sun, Q.; Wang, Y.; Mu, Y.; Zhang, K.; Dou, X.; Kong, M.; Chen, X.; Feng, C. Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. J. Mater. Chem. B 2018, 6, 7834–7841. [Google Scholar] [CrossRef] [PubMed]
- Machill, S.; Kohler, L.; Ueberlein, S.; Hedrich, R.; Kunaschk, M.; Paasch, S.; Schulze, R.; Brunner, E. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris. BioMetals 2013, 26, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Gehlen, M.; Beck, L.; Calas, G.; Flank, A.M.; Van Bennekom, A.J.; Van Beusekom, J.E.E. Unraveling the atomic structure of biogenic silica: Evidence of the structural association of Al and Si in diatom frustules. Geochim. Cosmochim. Acta 2002, 66, 1601–1609. [Google Scholar] [CrossRef]
- Jaccard, T.; Ariztegui, D.; Wilkinson, K.J. Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chem. Geol. 2009, 265, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Ellwood, M.J.; Hunter, K.A. The incorporation of zinc and iron into the frustule of the marine diatom Thalassiosira pseudonana. Limnol. Oceanogr. 2000, 45, 1517–1524. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, W.; Wang, L.; Liao, X.; Liu, P.; Deng, X.; Li, J. Preparation of silicate-based red phosphors with a patterned nanostructure via metabolic insertion of europium in marine diatoms. Mater. Lett. 2013, 110, 253–255. [Google Scholar] [CrossRef]
- Rorrer, G.L. CHAPTER 4: Functionalization of Frustules from Diatom Cell Culture for Optoelectronic Properties. In RSC Nanoscience and Nanotechnology; Royal Society of Chemistry: London, UK, January 2018; Volume 2018, pp. 79–110. ISBN 9781782624585. [Google Scholar]
- Lewin, J. Silicon Metabolism in Diatoms: 5. Germanium Dioxide, a Specific Inhibitor of Diatom Growth. Phycologia 1966, 6, 1–12. [Google Scholar] [CrossRef]
- Werner, D. Hemmung der Chlorophyllsynthese und der NADP+-abhängigen Glycerinaldehyd-3-Phosphat-Dehydrogenase durch Germaniumsäure bei Cyclotella cryptica. Arch. Mikrobiol. 1967, 57, 51–60. [Google Scholar] [CrossRef]
- Azam, F.; Hemmingsen, B.B.; Volcani, B.E. Germanium incorporation into the silica of diatom cell walls. Arch. Mikrobiol. 1973, 92, 11–20. [Google Scholar] [CrossRef]
- Richter, O. Zur Physiologie der Diatomeen, I., III. Sitzungsberichte der Kais. Akad. der Wissenschaften, Math. Klasse 1906, 115, 27–119. [Google Scholar]
- Nichols, H.W. Growth media-freshwater. In Handbook of Phycological Methods: Culture Methods and Growth Measurements; Stein, J.R., Ed.; Cambridge University Press: Cambridge, UK, 1973; pp. 7–24. ISBN 9780521297479. [Google Scholar]
- Delalat, B.; Sheppard, V.C.; Rasi Ghaemi, S.; Rao, S.; Prestidge, C.A.; McPhee, G.; Rogers, M.L.; Donoghue, J.F.; Pillay, V.; Johns, T.G.; et al. Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ref. a | [19] | [55] | [56] | [57] | [58] | [59] | [60] |
---|---|---|---|---|---|---|---|
Species | S.ac.b | P. sp. c | P. sp. | P. sp. | P. sp.; Cos. sp. d | F. sol.e | T. weiss.f |
Culture Medium | DM | f/2 | WC | f/2 | f/2 | f/2 | f/2 |
Lux [μmol/m2∙s] | 13–16 | 149 | 30 | 130 | 130 | 140 | 246 |
T [°C] | 12 | 22 | 20 | 20 | 20 | 25 | 16–22 |
pH | 7.4 | 8.4–8.6 | 7.6–8.4 | 8.0–8.4 | 8.0–8.35 | 6.4 | No data |
Process type | I g | II h | II | II | II | II | I |
Precursor | TiCl4 | TiOSO4 i | TiBALDH | TiOSO4 | TiOSO4 | TiBALDH | TiBALDH |
[Si] [mM] j | 10 | 0.48 | No data | 6.2 | 3.6–8.9 | No data | 0.2 |
[Ti] [mM] k | 10 | 0.0085–0.073 | 0.0–0.56 | 0.36 | 0.36–0.62 | 0.25–20 | 0.2–2.0 |
Ref. | [19] | [55] | [56] | [57] | [58] | [59] | [60] |
---|---|---|---|---|---|---|---|
Species | S. ac. | P. sp. | P. sp. | P. sp. | P. sp. Cos. sp. | F. sol. | T. weiss. |
Precursor | TiCl4 | TiOSO4 | TiBALDH | TiOSO4 | TiOSO4 | TiBALDH | TiBALDH |
[Ti] [mM] | 10 | 0.0085–0.073 | 0.0–0.56 | 0.36 | 0.36–0.62 | 0.25–20 | 0.2–2.0 |
Ti:Si [% atom] a | 0.16 | 0.6 | 3.2 | 0.62 | 0.34 | 6.02 | 20 |
Ti:Si [%wt] b | 0.6 | 2.3 | 10.4 | 2.37 | 0.93 | 10.6 | 34 |
Method of Analysis | ICP-MS | ICP-AES | ICP-MS | ICP-MS | EDS | ICP-AES | EDS |
Ref. | [3] | [19] | [52] | [53] | [54] | [61] | [62] |
---|---|---|---|---|---|---|---|
Species | T. pseudo.a | S. ac. | N. frust. | P. sp. | Stauro. sp. b | N. frust.c | P. sp. |
Culture Medium | No data | DM | LDM | LDM | f/2 | LDM | LDM |
Lux [μmol/m2*s] | No data | 13–16 | 150 | 150 | 164 | 125 | 50 |
T [°C] | No data | 12 | 22 | 22 | No data | 22 | 22 |
pH | No data | 7.4 | 8.4–8.9 | No data | No data | 8.2–8.4 | 8.3 |
Process Type | I | I | II | II | II | II | II |
Precursor | Ge (OH)4 | Na2GeO3 | GeO2 | GeO2 | GeO2 | Ge (OH)4 | GeO2 |
[Ge] d [mM] | 0.1 | 0.11 | 0.72 | 0.78 | 1.07 | 0.384 | 0.53 |
Geincorp. e | 0.42% wt. | 5.1%mol Ge/Si | 0.411%wt. | 0.965%wt. | No data | 2.74 mg Ge/g of DCW f | 0.965%wt. |
Method of Analysis | ICP-OES | ICP-MS | ICP | ICP | EDS | EDS | ICP |
Ref. | [65] | [66] |
---|---|---|
Species | T. weiss. | Cos. sp. |
Precursor | CaCl2 | CaCl2 |
Culture Medium | f/2 | f/2 |
Lux [μmol/m2*s] | No data | 246 |
T [°C] | 18–22 | 21 |
pH | No data | No data |
Caincorp a [%wt] | 0.9 | No data |
Method of Analysis | EDX | EDXS |
Zr/Sn | Ni | Al | Zn | Fe | Eu | |||
---|---|---|---|---|---|---|---|---|
Ref. | [19] | [64] | [63] | [67] | [69] | [70] | [70] | [71] |
Species | S. ac. | P. trico.a | Cos. | S. tur.b | S. hanz.c | T. pseudo. | T. pseudo. | Navi. sp. d |
Culture Medium | DM | Aquil | Alga-Gro | ASW | CHU-10 | f/2 | f/2 | “Ningbo 3” |
Lux [μmol/m2*s] | 13–16 | No data | No data | 82 | 50 | 120 | 120 | 246 |
T [°C] | 12 | 19 | 22 | 18 | 20 | 20–22 | 20–22 | 25 |
pH | 7.4 | 9 | No data | 8.0–8.2 | 6.4 | 7.2–8.3 | 8.0 | No data |
Process Type | I | I | I | I | II | II | II | II |
Precursor | ZrCl4 | ZrOCl2*8H2O | NiSO4 | AlCl3 | Zn–EDTA | Zn–EDTA | Fe–EDTA | Eu (NO3)3∙6H2O |
Xincorp. e | 3.4%mol Zr/Si; 0.91%mol Sn/Si | No data | ~0.1%wag | No data | No data | 2–5 . 1017 mol Zn/cell·day | No data | No data |
Method of Analysis | ICP-MS | EDX | EDX | ICP-OES | ICP-MS | GFAAS | GFAAS | XRD |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzozowska, W.; Sprynskyy, M.; Wojtczak, I.; Dąbek, P.; Witkowski, A.; Buszewski, B. “Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica. Materials 2020, 13, 2576. https://doi.org/10.3390/ma13112576
Brzozowska W, Sprynskyy M, Wojtczak I, Dąbek P, Witkowski A, Buszewski B. “Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica. Materials. 2020; 13(11):2576. https://doi.org/10.3390/ma13112576
Chicago/Turabian StyleBrzozowska, Weronika, Myroslav Sprynskyy, Izabela Wojtczak, Przemysław Dąbek, Andrzej Witkowski, and Bogusław Buszewski. 2020. "“Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica" Materials 13, no. 11: 2576. https://doi.org/10.3390/ma13112576
APA StyleBrzozowska, W., Sprynskyy, M., Wojtczak, I., Dąbek, P., Witkowski, A., & Buszewski, B. (2020). “Outsourcing” Diatoms in Fabrication of Metal-Doped 3D Biosilica. Materials, 13(11), 2576. https://doi.org/10.3390/ma13112576