The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume
Abstract
:1. Introduction
1.1. Aggregate Shape
1.2. Highly Reactive Pozzolans
- how does the type of coarse aggregate affect pore structure of the whole composite;
- whether the use of aggregate with higher resistance to crushing will increase compressive strength of the concrete;
- what is the impact of the aggregate used on thermal properties of the concrete;
- what is the influence of aggregate of the heat accumulation properties and dynamic heat flow;
- whether the use of high density basalt aggregate will hinder the process of free drying of the material;
- whether the use of silica dust additive will allow additional sealing and compaction of the composite cement matrix.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Additional pores were created by aeration of the cement matrix caused by the shape of the basalt aggregate. In contrast to the gravel round aggregate (Ref), the broken sharp edges of the basalt aggregate caused air entrapment in the cement paste in the Bas-8 concrete.
- The additional porosity of Bas-8 concrete caused a significant reduction in compressive strength compared to reference concretes, despite the fact that basalt aggregate has a much higher resistance to fragmentation than natural gravel aggregate.
- Both the thermal conductivity coefficient and volumetric specific heat have been lowered in concrete based on basalt aggregate in comparison with the data obtained for reference concrete, despite the higher thermal conductivity of basalt aggregate compared to gravel aggregate.
- The process of specimen drying occurred considerably faster in basalt-based concrete despite its higher density exhibited by this composite throughout the entire drying period.
Author Contributions
Funding
Conflicts of Interest
References
- Góralczyk, S.; Kukielska, D. The quality of Polish aggregates (in Polish). AGH J. Min. Geoengin. 2010, 34/4, 211–224. [Google Scholar]
- Garbalińska, H.; Strzałkowski, J. Aggregates as the shaping factor of thermal parameters of unmodified cement matrix (in Polish). J. Civ. Eng. Environ. Archit. 2016, 63, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Ueno, A.; Ogawa, Y. Influence of coarse aggregate shape on optimum fine to total aggregate ratio using a virtual voids-ratio diagram in concrete compaction. Cem. Concr. Compos. 2020, 106, 103463. [Google Scholar] [CrossRef]
- Ley, T.; Cook, D. Aggregate Gradations for Concrete Pavement Mixtures; CP Road Map: Rosemont, IL, USA, 2014. [Google Scholar]
- Shilstone, Sr.; James, S.M. Concrete Mixture Optimization. Concr. Int. 1990, 12, 33–39. [Google Scholar]
- de Larrard, F.; Sedran, T. Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 1994, 24, 997–1009. [Google Scholar] [CrossRef]
- de Larrard, T.; Bary, B.; Adam, E.; Kloss, F. Influence of aggregate shapes on drying and carbonation phenomena in 3D concrete numerical samples. Comput. Mater. Sci. 2013, 72, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jie, W.; Dassekpo, J.-B.M.; Wan, C.; Zha, X. Experimental and numerical modeling of chloride diffusivity in hardened cement concrete considering the aggregate shapes and exposure-duration effects. Results Phys. 2017, 7, 1427–1432. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, H.; Wang, B. Modeling and mechanical influence of meso-scale concrete considering actual aggregate shapes. Constr. Build. Mater. 2019, 228, 116785. [Google Scholar] [CrossRef]
- Piotrowska, E.; Malecot, Y.; Ke, Y. Experimental investigation of the effect of coarse aggregate shape and composition on concrete triaxial behavior. Mech. Mater. 2014, 79, 45–57. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, Z.; Wang, X.; Liu, H.; Ma, Y. Enhancing the mechanical strength and air permeability of corundum porous materials using shape-modified coarse aggregates. Ceram. Int. 2019, 45, 11027–11031. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F. Effect of specimen shape, silica fume, and curing age on durability properties of self-compacting concrete incorporating coarse recycled concrete aggregates. Constr. Build. Mater. 2019, 228, 117054. [Google Scholar] [CrossRef]
- Ludwig, H.-M. Bewertung ultrahochfester Betone unter dem Aspekt der Dauerhaftigkeit. Beton- und Stahlbetonbau 2005, 100, 116–123. [Google Scholar] [CrossRef]
- Bornemann, R.; Schmidt, M.; Fehling, E.; Middendorf, B. Ultra-Hochleistungsbeton UHPC - Herstellung, Eigenschaften und Anwendungsmöglichkeiten. Beton- und Stahlbetonbau 2001, 96, 458–467. [Google Scholar] [CrossRef]
- Tue, N.; Ma, J.; Orgass, M. Kriechen von Ultrahochfestem Beton (UHFB). Bautechnik 2006, 83, 119–124. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; El Madawy, M.E.; Chung, S.-Y.; Sikora, P.; Stephan, D. Preparation and Characterization of Ultra-Lightweight Foamed Concrete Incorporating Lightweight Aggregates. Appl. Sci. 2019, 9, 1447. [Google Scholar] [CrossRef] [Green Version]
- Gökçe, H.S.; Hatungimana, D.; Ramyar, K. Effect of fly ash and silica fume on hardened properties of foam concrete. Constr. Build. Mater. 2019, 194, 1–11. [Google Scholar] [CrossRef]
- Abd Elrahman, M.; Chung, S.-Y.; Sikora, P.; Rucinska, T.; Stephan, D. Influence of Nanosilica on Mechanical Properties, Sorptivity, and Microstructure of Lightweight Concrete. Materials 2019, 12, 3078. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Harish, K.V. An integrated approach for studying the hydration of portland cement systems containing silica fume. Constr. Build. Mater. 2018, 188, 1179–1192. [Google Scholar] [CrossRef]
- Zhu, N.; Jin, F.; Kong, X.; Xu, Y.; Zhou, J.; Wang, B.; Wu, H. Interface and anti-corrosion properties of sea-sand concrete with fumed silica. Constr. Build. Mater. 2018, 188, 1085–1091. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Dai, S.; Ma, B.; Jiang, Q. Investigation of silica fume as foam cell stabilizer for foamed concrete. Constr. Build. Mater. 2020, 237, 117514. [Google Scholar] [CrossRef]
- Zarnaghi, V.N.; Fouroghi-Asl, A.; Nourani, V.; Ma, H. On the pore structures of lightweight self-compacting concrete containing silica fume. Constr. Build. Mater. 2018, 193, 557–564. [Google Scholar] [CrossRef]
- Sasanipour, H.; Aslani, F.; Taherinezhad, J. Effect of silica fume on durability of self-compacting concrete made with waste recycled concrete aggregates. Constr. Build. Mater. 2019, 227, 116598. [Google Scholar] [CrossRef]
- Xie, J.; Li, J.; Lu, Z.; Li, Z.; Fang, C.; Huang, L.; Li, L. Combination effects of rubber and silica fume on the fracture behaviour of steel-fibre recycled aggregate concrete. Constr. Build. Mater. 2019, 203, 164–173. [Google Scholar] [CrossRef]
- Khan, M.; Ali, M. Improvement in concrete behavior with fly ash, silica-fume and coconut fibres. Constr. Build. Mate. 2019, 203, 174–187. [Google Scholar] [CrossRef]
- Abd Elhakam, A.; Mohamed, A.E.; Awad, E. Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr. Build. Mater. 2012, 35, 421–427. [Google Scholar] [CrossRef]
- Xie, J.; Huang, L.; Guo, Y.; Li, Z.; Fang, C.; Li, L.; Wang, J. Experimental study on the compressive and flexural behaviour of recycled aggregate concrete modified with silica fume and fibres. Constr. Build. Mater. 2018, 178, 612–623. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Constr. Build. Mater. 2017, 147, 803–814. [Google Scholar] [CrossRef]
- Pedro, D.; de Brito, J.; Evangelista, L. Durability performance of high-performance concrete made with recycled aggregates, fly ash and densified silica fume. Cem. Concr. Compos. 2018, 93, 63–74. [Google Scholar] [CrossRef]
- Stolarska, A.; Ciborowski, S. Sorptive testing of mortars with varying water-cement ratios. E3S Web Conf. 2018, 49, 00107. [Google Scholar] [CrossRef] [Green Version]
- Garbalińska, H.; Kowalski, S.J.; Staszak, M. Moisture diffusivity in mortars of different water–cement ratios and in narrow ranges of air humidity changes. Int. J. Heat Mass Transf. 2013, 56, 212–222. [Google Scholar] [CrossRef]
- Garbalińska, H. Application of the logarithmic procedure to absorption measurements of mass diffusivity for cement mortars. Heat Mass Transf. 2004, 40, 963–972. [Google Scholar] [CrossRef]
- Wygocka-Domagałło, A.; Garbalińska, H. The effect of pore structure on the water sorption coefficient of cement mortars reinforced with 12 mm polypropylene fibres. Constr. Build. Mater. 2020, 248, 118606. [Google Scholar] [CrossRef]
- Khodabakhshian, A.; Ghalehnovi, M.; de Brito, J.; Asadi Shamsabadi, E. Durability performance of structural concrete containing silica fume and marble industry waste powder. J. Clean. Prod. 2018, 170, 42–60. [Google Scholar] [CrossRef]
- Behnood, A.; Golafshani, E.M. Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves. J. Clean. Prod. 2018, 202, 54–64. [Google Scholar] [CrossRef]
- Garbalińska, H.; Głowacka, A.; Strzałkowski, J. Evaluation of dampness-induced strength reduction of calcium silicate blocks. E3S Web Conf. 2018, 49, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Motahari Karein, S.M.; Ramezanianpour, A.A.; Ebadi, T.; Isapour, S.; Karakouzian, M. A new approach for application of silica fume in concrete: Wet granulation. Constr. Build. Mater. 2017, 157, 573–581. [Google Scholar] [CrossRef]
- Skoczylas, K.; Rucinska, T. Strength and durability of cement mortars containing nanosilica and waste glass fine aggregate. Cem. Wapno Beton 2018, 23, 206–215. [Google Scholar]
- Skoczylas, K.; Rucińska, T. The effects of waste glass cullets and nanosilica on the long-term properties of cement mortars. E3S Web Conf. 2018, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Horszczaruk, E.; Rucinska, T.; Nawrotek, P.; Mijowska, E. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials. Materials 2016, 9, 701. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Ashish, D.K. Silica fume and waste glass in cement concrete production: A review. J. Build. Eng. 2019, 29, 100888. [Google Scholar] [CrossRef]
- Sikora, P.; Abd Elrahman, M.; Horszczaruk, E.; Brzozowski, P.; Stephan, D. Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Constr. Build. Mater. 2019, 204, 113–121. [Google Scholar] [CrossRef]
- Horszczaruk, E.; Brzozowski, P. Investigation of gamma ray shielding efficiency and physicomechanical performances of heavyweight concrete subjected to high temperature. Constr. Build. Mater. 2019, 195, 574–582. [Google Scholar] [CrossRef]
- Li, L.G.; Zheng, J.Y.; Zhu, J.; Kwan, A.K.H. Combined usage of micro-silica and nano-silica in concrete: SP demand, cementing efficiencies and synergistic effect. Constr. Build. Mater. 2018, 168, 622–632. [Google Scholar] [CrossRef]
- EN 12390-1. Testing Hardened Concrete. Shape, Dimensions and Other Requirements for Specimens and Moulds; BSI: London, UK, 2013. [Google Scholar]
- EN 12390-2. Testing Hardened Concrete. Making and Curing Specimens for Strength Tests; BSI: London, UK, 2019. [Google Scholar]
- EN 12390-3. Testing Hardened Concrete - Part 3: Compressive Strength of Test Specimens; BSI: London, UK, 2019. [Google Scholar]
- ISO 15901-1. Evaluation of Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption — Part 1: Mercury Porosimetry; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Chung, S.-Y.; Sikora, P.; Rucinska, T.; Stephan, D.; Abd Elrahman, M. Comparison of the pore size distributions of concretes with different air-entraining admixture dosages using 2D and 3D imaging approaches. Mater. Charact. 2020, 162, 110182. [Google Scholar] [CrossRef]
- Strzałkowski, J.; Garbalińska, H. Porosimetric, Thermal and Strength Tests of Aerated and Nonaerated Concretes. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 1–10. [Google Scholar] [CrossRef]
Aggregate Type | Water Absorption [%] | Specific Gravity [g/cm3] | Loose Bulk Density [g/cm3] | Compacted Bulk Density [g/cm3] |
---|---|---|---|---|
Ref | 1.64 | 2.50 | 1.54 | 1.68 |
Bas | 1.19 | 2.68 | 1.47 | 1.71 |
Type | Type of Aggregate | Coarse Aggregate | Coarse Aggregate | Sand | Cement | Water | Silica Fume | Super-Plasticizer |
---|---|---|---|---|---|---|---|---|
[kg/m3] | [dm3/m3] | [kg/m3] | [kg/m3] | [kg/m3] | [%] | [%] | ||
Ref-0 | Natural Gravel 4–8 mm | 1295.0 | 488.7 | 463.0 | 385.5 | 212.0 | 0.0 | 0.00 |
Ref-8 | 1269.0 | 478.8 | 463.0 | 385.5 | 212.0 | 8.0 | 0.75 | |
Bas-8 | Basalt 4–8 mm | 1370.0 | 478.8 | 463.0 | 385.5 | 212.0 | 8.0 | 0.75 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzałkowski, J.; Garbalińska, H. The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume. Materials 2020, 13, 2780. https://doi.org/10.3390/ma13122780
Strzałkowski J, Garbalińska H. The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume. Materials. 2020; 13(12):2780. https://doi.org/10.3390/ma13122780
Chicago/Turabian StyleStrzałkowski, Jarosław, and Halina Garbalińska. 2020. "The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume" Materials 13, no. 12: 2780. https://doi.org/10.3390/ma13122780
APA StyleStrzałkowski, J., & Garbalińska, H. (2020). The Effect of Aggregate Shape on the Properties of Concretes with Silica Fume. Materials, 13(12), 2780. https://doi.org/10.3390/ma13122780