Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Original Texts | Acronyms and Abbreviations |
Awl-shaped serpentine microspring | ASSM |
Micro-electro-mechanical system | MEMS |
Silicon-on-insulator | SOI |
Plasma enhanced chemical vapor deposition | PECVD |
Reactive ion etching | RIE |
Hydrofluoric acid | HF |
Scanning electron microscope | SEM |
Charge coupled device | CCD |
Microforce Testing System | MTS |
Appendix A
References
- Hu, F.; Wang, W.; Yao, J. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. J. Micromech. Microeng. 2011, 21, 115029. [Google Scholar] [CrossRef]
- Hata, S.; Kato, T.; Fukushige, T.; Shimokohbe, A. Integrated conical spring linear actuator. Microelectron. Eng 2003, 67–68, 574–581. [Google Scholar] [CrossRef]
- Tatar, E.; Alper, S.E.; Akin, T. Quadrature-error compensation and corresponding effects on the performance of fully decoupled MEMS gyroscopes. J. Microelectromech. Syst. 2012, 21, 656–667. [Google Scholar] [CrossRef]
- Luo, J.K.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Three types of planar structure microspring electro-thermal actuators with insulating beam. J. Micromech. Microeng. 2005, 15, 1527–1535. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.C.; Nguyen, T.C.H.; Judy, M.W.; Howe, R.T. Electrostatic-comb drive of lateral polysilicon resonators. Sens. Actuator A-Phys. 1990, A21–A23, 328–331. [Google Scholar] [CrossRef]
- Chuang, C.T.; Chen, R. Design, fabrication and characterization of out of plane W-Form micro-spring for vertical comb electrodes capacitive sensor. J. Micro-Nanolithogr. MEMS MOEMS 2009, 8, 033021. [Google Scholar] [CrossRef]
- Saad, N.H.; Al-Dadah, R.K.; Anthony, C.J.; Ward, M.C.L. Analysis of MEMS mechanical spring for coupling multimodal micro resonators sensor. Microelectron. Eng. 2009, 86, 1190–1193. [Google Scholar] [CrossRef]
- Lu, Y.; Ji, H.F. Fabrication of microcoil/microsprings for novel chemical and biological sensing. Sens. Actuator B-chem. 2007, 123, 937–941. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Rong, W.; Li, X.; Bao, H. A silicon integrated micro nano-positioning XY-stage for nano-manipulation. J. Micromech. Microeng. 2008, 18, 125004. [Google Scholar] [CrossRef]
- Dong, J.; Mukhopadhyay, D.; Ferreira, P.M. Design, fabrication and testing of a silicon-on-insulator (SOI) MEMS parallel kinematics XY stage. J. Micromech. Microeng. 2007, 17, 1154–1161. [Google Scholar] [CrossRef]
- Sasaki, M.; Bono, F.; Hane, K. Large-Displacement Micro-XY-Stage with Paired Moving Plates. Jpn. J. Appl. Phys. 2008, 47, 3226–3231. [Google Scholar] [CrossRef]
- Kwon, H.N.; Lee, J.H.; Takahashi, K.J.; Toshiyoshi, H. Micro XY-stages with spider-leg actuators for 2-dimensional optical scanning. In Proceedings of the 13th International Conference on Solid-State Sensors, Actuators and Microsystems Transducers, Seoul, Korea, 5–9 June 2005; pp. 69–72. [Google Scholar]
- Lueke, J.; Rezaei, M.; Moussa, W.A. Investigation of folded spring structures for vibration-based piezoelectric energy harvesting. J. Micromech. Microeng. 2014, 24, 125011. [Google Scholar] [CrossRef]
- Tao, K.; Liu, S.; Lye, S.W.; Miao, J.; Hu, X. A three-dimensional electret-based micro power generator for low-level ambient vibrational energy harvesting. J. Micromech. Microeng. 2014, 24, 065022. [Google Scholar] [CrossRef]
- Roncin, A.; Shafai, C.; Swatek, D.R. Electric field sensor using electrostatic force deflection of a micro-spring supported membrane. Sens. Actuator A-Phys. 2005, 123–124, 179–184. [Google Scholar] [CrossRef]
- Hsieh, H.T.; John Su, G.D. Reliability of a MEMS actuator improved by spring corner designs and reshaped driving waveforms. Sensors 2007, 7, 1720–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, S.; Zhou, Y.; Mukherjee, T. Analytical modeling of cross-axis coupling in micromechanical springs. In Technical Proceedings of the 1999 International Conference on Modeling and Simulation of Microsystems, San Juan, Puerto Rico, USA, 19–21 April 1999; pp. 632–635. [Google Scholar]
- Oak, S.; Edmiston, G.F.; Sivakumar, G.; Dallas, T. Rotating out-of-plane micromirror. J. Microelectromech. Syst. 2010, 19, 632–639. [Google Scholar] [CrossRef]
- Grech, D.; Kiang, K.S.; Zekonyte, J.; Stolz, M.; Wood, R.J.K.; Chong, H.M.H. Highly linear and large spring deflection characteristics of a Quasi-Concertina MEMS device. Microelectron. Eng. 2014, 119, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Fedder, G. Simulations of Microelectromechanical Systems. PhD Thesis, University of California, San Francisco, CA, USA, 1994. [Google Scholar]
- Legtenberg, R.; Groeneveld, A.W.; Elwenspoek, M. Comb-drive actuators for large displacements. J. Micromech. Microeng. 1996, 6, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Barillaro, G.; Molfese, A.; Nannini, A.; Pieri, F. Analysis, simulation and relative performances of two kinds of serpentine springs. J. Micromech. Microeng. 2005, 15, 736–746. [Google Scholar] [CrossRef]
- Weigold, J.W.; Najafi, K.; Pang, S.W. Design and fabrication of submicrometer, single crystal Si accelerometer. J. Microelectromech. Syst. 2001, 10, 518–524. [Google Scholar] [CrossRef]
- Baidya, B.; Gupta, S.K.; Mukherjee, T. An extraction-based verification methodology for MEMS. J. Microelectromech. Syst. 2002, 11, 2–11. [Google Scholar] [CrossRef]
- Gupta, V.; Mukherjee, T. Layout synthesis of CMOS MEMS accelerometers. In Proc. Modeling and Simulation of Microsystems Semiconductors; Sensors and Actuators: San Diego, CA, USA, 2000; pp. 150–153. [Google Scholar]
- Tsang, S.H.; Sameoto, D.; Foulds, I.; Leung, A.M.; Parameswaran, M. Automated assembly of hingeless 90 degrees out-of-plane microstructures. J. Micromech. Microeng. 2007, 17, 1314–1325. [Google Scholar] [CrossRef]
- Wang, P.H.; Dai, X.H.; Fang, D.M.; Zhao, X.L. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectron. J. 2007, 38, 1175–1180. [Google Scholar] [CrossRef]
- Fukushige, T.; Hata, S.; Shimokohbe, A. A MEMS conical spring actuator array. J. Microelectromech. Syst. 2005, 14, 243–252. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.P.; Wang, H.; Ding, G.F. Analysis, simulation and fabrication of MEMS springs for a micro-tensile system. J. Micromech. Microeng. 2008, 19, 015027–015037. [Google Scholar] [CrossRef]
- Yeh, J.A.; Chen, C.N.; Lui, Y.S. Large rotation actuated by in-plane rotary comb-drives with serpentine spring suspension. J. Micromech. Microeng. 2005, 15, 201–206. [Google Scholar] [CrossRef]
- Su, G.-D.J.; Hung, S.H.; Jia, D.; Jiang, F. Serpentine spring corner designs for Micro-Electro-Mechanical Systems optical switches with large mirror mass. Opt. Rev. 2005, 12, 339–344. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, N. Investigation of actuation voltage for non-uniform serpentine flexure design of RF-MEMS switch. Microsyst. Technol. 2014, 20, 413–418. [Google Scholar] [CrossRef]
- Chou, H.M.; Lin, M.J.; Chen, R. Fabrication and analysis of awl-shaped serpentine microsprings for large out-of-plane displacement. J. Micromech. Microeng. 2015, 25, 095018. [Google Scholar] [CrossRef]
- Chou, H.M.; Lin, M.J.; Chen, R. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. J. Micro/Nanolith. MEMS MOEMS 2016, 15, 035003. [Google Scholar] [CrossRef]
- Chou, H.M.; Lin, M.J.; Chen, R. Geometric effect on nonlinearity of awl-shaped serpentine springs. Procedia Eng. 2016, 168, 896–899. [Google Scholar] [CrossRef]
- Bisshopp, K.E.; Drucker, D.C. Large deflection of cantilever beams. Q. Appl. Math. 1945, 3, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. An integral approach for large deflection cantilever beam. Int. J. Nonlin. Mech. 2010, 45, 301–305. [Google Scholar] [CrossRef]
- Timoshenko, S.; Young, D.H. Elements of strength of materials, 5th ed.; D. Van Nostrand Company, Inc.: Toronto, ON, Canada, 1968; p. 212. [Google Scholar]
- Wu, C.C.; Lin, M.J.; Chen, R. Effect of box microspring sizes on nonlinear deformation. Sens. Mater. 2008, 20, 457–466. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-J.; Chou, H.-M.; Chen, R. Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation. Materials 2020, 13, 2864. https://doi.org/10.3390/ma13122864
Lin M-J, Chou H-M, Chen R. Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation. Materials. 2020; 13(12):2864. https://doi.org/10.3390/ma13122864
Chicago/Turabian StyleLin, Meng-Ju, Hui-Min Chou, and Rongshun Chen. 2020. "Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation" Materials 13, no. 12: 2864. https://doi.org/10.3390/ma13122864
APA StyleLin, M. -J., Chou, H. -M., & Chen, R. (2020). Geometric Effect on the Nonlinear Force-Displacement Relationship of Awl-Shaped Serpentine Microsprings for In-Plane Deformation. Materials, 13(12), 2864. https://doi.org/10.3390/ma13122864