Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Silica Nanoparticles
2.1.1. Preparation of M015 and M0171 Bimodal Silica SNPs
2.1.2. Preparation of SNP022 Bimodal Silica SNPs
2.2. Sample Characterization
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. Dynamic Light Scattering (DLS)
2.2.3. Microfluidic Resistive Pulse Sensing (MRPS)
2.2.4. Small Angle X-Ray Scattering (SAXS)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Béland, F.; Ilharco, L.M.; Pagliaro, M. The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications. Chem. Rev. 2013, 113, 6592–6620. [Google Scholar] [CrossRef]
- Schulze, J.S.; Migenda, J.; Becker, M.; Schuler, S.M.M.; Wende, R.C.; Schreiner, P.R.; Smarsly, B.M. TEMPO-functionalized mesoporous silica particles as heterogeneous oxidation catalysts in flow. J. Mater. Chem. A 2020, 8, 4107–4117. [Google Scholar] [CrossRef]
- Burns, A.; Sengupta, P.; Zedayko, T.; Baird, B.; Wiesner, U. Core/Shell Fluorescent Silica Nanoparticles for Chemical Sensing: Towards Single-Particle Laboratories. Small 2006, 2, 723–726. [Google Scholar] [CrossRef]
- Cho, Y.K.; Park, E.J.; Kim, Y.D. Removal of oil by gelation using hydrophobic silica nanoparticles. J. Ind. Eng. Chem. 2014, 20, 1231–1235. [Google Scholar] [CrossRef]
- Pálmai, M.; Pethő, A.; Nagy, L.N.; Klébert, S.; May, Z.; Mihály, J.; Wacha, A.; Jemnitz, K.; Veres, Z.; Horváth, I.; et al. Direct immobilization of manganese chelates on silica nanospheres for MRI applications. J. Colloid Interface Sci. 2017, 498, 298–305. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Bogush, G.H.; Tracy, M.A.; Zukoski, C.F. Preparation of monodisperse silica particles: Control of size and mass fraction. J. Non-Cryst. Solids 1988, 104, 95–106. [Google Scholar] [CrossRef]
- Giesche, H. Synthesis of monodispersed silica powders II. Controlled growth reaction and continuous production process. J. Eur. Ceram. Soc. 1994, 14, 205–214. [Google Scholar] [CrossRef]
- Yokoi, T.; Sakamoto, Y.; Terasaki, O.; Kubota, Y.; Okubo, T.; Tatsumi, T. Periodic Arrangement of Silica Nanospheres Assisted by Amino Acids. J. Am. Chem. Soc. 2006, 128, 13664–13665. [Google Scholar] [CrossRef] [PubMed]
- Hartlen, K.D.; Athanasopoulos, A.P.T.; Kitaev, V. Facile Preparation of Highly Monodisperse Small Silica Spheres (15 to >200 nm) Suitable for Colloidal Templating and Formation of Ordered Arrays. Langmuir 2008, 24, 1714–1720. [Google Scholar] [CrossRef]
- Zhang, K.; Song, Z.F.; Yan, Y.; Chen, Q.M. Colloidal Silica Particles with Bimodal Final Size Distribution: Ion-Induced Nucleation Mechanism. SSP 2007, 121–123, 105–108. [Google Scholar] [CrossRef]
- Van Blaaderen, A.; Van Geest, J.; Vrij, A. Monodisperse colloidal silica spheres from tetraalkoxysilanes: Particle formation and growth mechanism. J. Colloid Interface Sci. 1992, 154, 481–501. [Google Scholar] [CrossRef]
- Lin, P.-C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 2014, 32, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Mahl, D.; Diendorf, J.; Meyer-Zaika, W.; Epple, M. Possibilities and limitations of different analytical methods for the size determination of a bimodal dispersion of metallic nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2011, 377, 386–392. [Google Scholar] [CrossRef]
- Anderson, W.; Kozak, D.; Coleman, V.A.; Jämting, Å.K.; Trau, M. A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci. 2013, 405, 322–330. [Google Scholar] [CrossRef]
- Planken, K.L.; Kuipers, B.W.M.; Philipse, A.P. Model Independent Determination of Colloidal Silica Size Distributions via Analytical Ultracentrifugation. Anal. Chem. 2008, 80, 8871–8879. [Google Scholar] [CrossRef] [Green Version]
- Varenne, F.; Makky, A.; Gaucher-Delmas, M.; Violleau, F.; Vauthier, C. Multimodal Dispersion of Nanoparticles: A Comprehensive Evaluation of Size Distribution with 9 Size Measurement Methods. Pharm. Res. 2016, 33, 1220–1234. [Google Scholar] [CrossRef] [Green Version]
- Braun, A.; Couteau, O.; Franks, K.; Kestens, V.; Roebben, G.; Lamberty, A.; Linsinger, T.P.J. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Adv. Powder Technol. 2011, 22, 766–770. [Google Scholar] [CrossRef]
- Pálmai, M.; Szalay, R.; Bartczak, D.; Varga, Z.; Nagy, L.N.; Gollwitzer, C.; Krumrey, M.; Goenaga-Infante, H. Total synthesis of isotopically enriched Si-29 silica NPs as potential spikes for isotope dilution quantification of natural silica NPs. J. Colloid Interface Sci. 2015, 445, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Bell, N.C.; Minelli, C.; Tompkins, J.; Stevens, M.M.; Shard, A.G. Emerging Techniques for Submicrometer Particle Sizing Applied to Stöber Silica. Langmuir 2012, 28, 10860–10872. [Google Scholar] [CrossRef]
- Varga, Z.; van der Pol, E.; Pálmai, M.; Garcia-Diez, R.; Gollwitzer, C.; Krumrey, M.; Fraikin, J.-L.; Gasecka, A.; Hajji, N.; van Leeuwen, T.G.; et al. Hollow organosilica beads as reference particles for optical detection of extracellular vesicles. J. Thromb. Haemost. 2018, 16, 1646–1655. [Google Scholar] [CrossRef]
- Fraikin, J.-L.; Teesalu, T.; McKenney, C.M.; Ruoslahti, E.; Cleland, A.N. A high-throughput label-free nanoparticle analyser. Nat. Nanotechnol. 2011, 6, 308–313. [Google Scholar] [CrossRef]
- Cascio, C.; Gilliland, D.; Rossi, F.; Calzolai, L.; Contado, C. Critical Experimental Evaluation of Key Methods to Detect, Size and Quantify Nanoparticulate Silver. Anal. Chem. 2014, 86, 12143–12151. [Google Scholar] [CrossRef] [PubMed]
- Tuoriniemi, J.; Johnsson, A.-C.J.H.; Holmberg, J.P.; Gustafsson, S.; Gallego-Urrea, J.A.; Olsson, E.; Pettersson, J.B.C.; Hassellöv, M. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles. Sci. Technol. Adv. Mater. 2014, 15, 035009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolet, A.; Meli, F.; Van der Pol, E.; Yuana, Y.; Gollwitzer, C.; Krumrey, M.; Cizmar, P.; Buhr, E.; Pétry, J.; Sebaihi, N. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements. Meas. Sci. Technol. 2016, 27, 035701. [Google Scholar] [CrossRef]
- Gollwitzer, C.; Bartczak, D.; Goenaga-Infante, H.; Kestens, V.; Krumrey, M.; Minelli, C.; Pálmai, M.; Ramaye, Y.; Roebben, G.; Sikora, A.; et al. A comparison of techniques for size measurement of nanoparticles in cell culture medium. Anal. Methods 2016, 8, 5272–5282. [Google Scholar] [CrossRef] [Green Version]
- van der Pol, E.; Coumans, F.a.W.; Grootemaat, A.E.; Gardiner, C.; Sargent, I.L.; Harrison, P.; Sturk, A.; van Leeuwen, T.G.; Nieuwland, R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J. Thromb. Haemost. 2014, 12, 1182–1192. [Google Scholar] [CrossRef]
- Varga, Z.; Yuana, Y.; Grootemaat, A.E.; van der Pol, E.; Gollwitzer, C.; Krumrey, M.; Nieuwland, R. Towards traceable size determination of extracellular vesicles. J. Extracell. Vesicles 2014, 3, 23298. [Google Scholar] [CrossRef]
- Roebben, G.; Kestens, V.; Varga, Z.; Charoud-Got, J.; Ramaye, Y.; Gollwitzer, C.; Bartczak, D.; Geißler, D.; Noble, J.; Mazoua, S. Reference materials and representative test materials to develop nanoparticle characterization methods: The NanoChOp project case. Front. Chem. 2015, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Varga, Z.; Fehér, B.; Kitka, D.; Wacha, A.; Bóta, A.; Berényi, S.; Pipich, V.; Fraikin, J.-L. Size Measurement of Extracellular Vesicles and Synthetic Liposomes: The Impact of the Hydration Shell and the Protein Corona. Colloids Surf. B Biointerfaces 2020, 192, 111053. [Google Scholar] [CrossRef]
- Gleber, G.; Cibik, L.; Haas, S.; Hoell, A.; Müller, P.; Krumrey, M. Traceable size determination of PMMA nanoparticles based on Small Angle X-ray Scattering (SAXS). J. Phys. Conf. Ser. 2010, 247, 012027. [Google Scholar] [CrossRef]
- Krumrey, M.; Gleber, G.; Scholze, F.; Wernecke, J. Synchrotron radiation-based x-ray reflection and scattering techniques for dimensional nanometrology. Meas. Sci. Technol. 2011, 22, 094032. [Google Scholar] [CrossRef]
- Krumrey, M. Small angle x-ray scattering (SAXS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 173–183. ISBN 978-0-12-814182-3. [Google Scholar]
- Kestens, V.; Roebben, G.; Herrmann, J.; Jämting, Å.; Coleman, V.; Minelli, C.; Clifford, C.; De Temmerman, P.-J.; Mast, J.; Junjie, L.; et al. Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material. J. Nanopart. Res. 2016, 18, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, N.; Ikuno, T.; Okubo, T.; Shimojima, A. Synthesis of monodisperse organosilica nanoparticles with hollow interiors and porous shells using silica nanospheres as templates. Chem. Commun. 2013, 49, 4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, R.S.; Raimundo, I.M.; Pimentel, M.F. Revising the synthesis of Stöber silica nanoparticles: A multivariate assessment study on the effects of reaction parameters on the particle size. Colloids Surf. A Physicochem. Eng. Asp. 2019, 577, 1–7. [Google Scholar] [CrossRef]
- Park, J.; Yim, B.; Park, C.Y.; Chang, M.W. The effect of silica nanoparticles on human corneal epithelial cells. Acta Ophthalmol. 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Pálmai, M.; Nagy, L.N.; Mihály, J.; Varga, Z.; Tárkányi, G.; Mizsei, R.; Szigyártó, I.C.; Kiss, T.; Kremmer, T.; Bóta, A. Preparation, purification, and characterization of aminopropyl-functionalized silica sol. J. Colloid Interface Sci. 2013, 390, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wacha, A.; Varga, Z.; Bóta, A. CREDO: A new general-purpose laboratory instrument for small-angle X-ray scattering. J. Appl. Crystallogr. 2014, 47, 1749–1754. [Google Scholar] [CrossRef] [Green Version]
- Wacha, A. Optimized Pinhole Geometry for Small-Angle Scattering. J. Appl. Crystallogr. 2015, 48, 1843–1848. [Google Scholar] [CrossRef] [Green Version]
- Eikenberry, E.; Brönnimann, C.; Hülsen, G.; Toyokawa, H.; Horisberger, R.; Schmitt, B.; Schulze-Briese, C.; Tomizaki, T. PILATUS: A two-dimensional X-ray detector for macromolecular crystallography. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometersdetectors Assoc. Equip. 2003, 501, 260–266. [Google Scholar] [CrossRef]
- Kraft, P.; Bergamaschi, A.; Broennimann, C.; Dinapoli, R.; Eikenberry, E.F.; Henrich, B.; Johnson, I.; Mozzanica, A.; Schleputz, C.M.; Willmott, P.R. Performance of single-photon-counting PILATUS detector modules. J. Synchrotron Radiat. 2009, 16, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Kraft, P.; Bergamaschi, A.; Bronnimann, C.; Dinapoli, R.; Eikenberry, E.F.; Graafsma, H.; Henrich, B.; Johnson, I.; Kobas, M.; Mozzanica, A. Characterization and calibration of PILATUS detectors. IEEE Trans. Nucl. Sci. 2009, 56, 758–764. [Google Scholar] [CrossRef]
- Huang, T.; Toraya, H.; Blanton, T.; Wu, Y. X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Crystallogr. 1993, 26, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K.; Van Deun, R.; Thijs, B.; Vanwelkenhuysen, I.; Geuens, I. Structure and Mesomorphism of Silver Alkanoates. Chem. Mater. 2004, 16, 2021–2027. [Google Scholar] [CrossRef]
- Orthaber, D.; Bergmann, A.; Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 2000, 33, 218–225. [Google Scholar] [CrossRef]
- Bergmann, R.B.; Bill, A. On the origin of logarithmic-normal distributions: An analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 2008, 310, 3135–3138. [Google Scholar] [CrossRef] [Green Version]
Sample | Fraction | TEM | |
---|---|---|---|
Mean Diameter (nm) | SD (nm) | ||
M 015 | #1 | 34.5 ± 2.0 | 14.1 ± 4.3 |
#2 | 47.1 ± 0.2 | 5.0 ± 0.2 | |
M 0171 | #1 | 34.7 ± 0.1 | 10.1 ± 0.3 |
#2 | 72.0 ± 0.3 | 10.3 ± 0.6 | |
SNP022 | #1 | 68.8 ± 0.8 | 11.4 ± 2.0 |
#2 | 101.6 ± 0.5 | 14.7 ± 1.3 |
Model | Fraction | Parameter | M015 | M0171 | SNP022 |
---|---|---|---|---|---|
bimodal normal | #1 | mode (nm) | 46.9 ± 0.1 | 70.84 ± 0.03 | 103.5 ± 0.3 |
SD (nm) | 3.7 ± 0.2 | 5.15 ± 0.05 | 7.4 ± 0.5 | ||
conc. (1012 mL−1) | 80 ± 20 | 23 ± 5 | 0.42 ± 0.10 | ||
#2 | mode (nm) | 30 ± 3 | 35.14 ± 0.06 | 71.1 ± 0.5 | |
SD (nm) | 11 ± 2 | 6.10 ± 0.05 | 7.2 ± 0.8 | ||
conc. (1012 mL−1) | 22 ± 6 | 90 ± 20 | 0.5 ± 0.1 | ||
Reduced χ2 | 1.49 | 16.61 | 0.37 | ||
bimodal log-normal | #1 | mode (nm) | 46.7 ± 0.1 | 70.69 ± 0.03 | 103.3 ± 0.4 |
SD (nm) | 3.55 ± 0.10 | 4.76 ± 0.05 | 7.1 ± 0.5 | ||
conc. (1012 mL−1) | 80 ± 20 | 23 ± 5 | 0.41 ± 0.09 | ||
#2 | mode (nm) | 33.8 ± 0.5 | 34.15 ± 0.06 | 70.5 ± 0.6 | |
SD (nm) | 2 ± 1 | 6.05 ± 0.04 | 7.6 ± 0.8 | ||
conc. (1012 mL−1) | 12 ± 3 | 80 ± 20 | 0.6 ± 0.1 | ||
Reduced χ2 | 0.88 | 13.37 | 0.33 | ||
unimodal normal | #1 | mode (nm) | 46.17 ± 0.03 | 68.67 ± 0.06 | 104.9 ± 0.3 |
SD (nm) | 4.64 ± 0.03 | 14.53 ± 0.03 | 11.2 ± 0.2 | ||
conc. (1012 mL−1) | 90 ± 20 | 50 ± 10 | 0.6 ± 0.1 | ||
Reduced χ2 | 2.42 | 697.53 | 3.14 | ||
unimodal log-normal | #1 | mode (nm) | 45.70 ± 0.03 | 70.05 ± 0.05 | 104.6 ± 0.3 |
SD (nm) | 4.52 ± 0.03 | 13.71 ± 0.03 | 11.0 ± 0.2 | ||
conc. (1012 mL−1) | 90 ± 20 | 50 ± 10 | 0.6 ± 0.1 | ||
Reduced χ2 | 2.98 | 672.01 | 3.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khafaji, M.A.; Gaál, A.; Wacha, A.; Bóta, A.; Varga, Z. Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. Materials 2020, 13, 3101. https://doi.org/10.3390/ma13143101
Al-Khafaji MA, Gaál A, Wacha A, Bóta A, Varga Z. Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. Materials. 2020; 13(14):3101. https://doi.org/10.3390/ma13143101
Chicago/Turabian StyleAl-Khafaji, Mohammed A., Anikó Gaál, András Wacha, Attila Bóta, and Zoltán Varga. 2020. "Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques" Materials 13, no. 14: 3101. https://doi.org/10.3390/ma13143101
APA StyleAl-Khafaji, M. A., Gaál, A., Wacha, A., Bóta, A., & Varga, Z. (2020). Particle Size Distribution of Bimodal Silica Nanoparticles: A Comparison of Different Measurement Techniques. Materials, 13(14), 3101. https://doi.org/10.3390/ma13143101