Bifilm Defects in Ti-Inoculated Chromium White Cast Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Casting Material
2.2. Metallographic Examination
2.3. Hardness and Impact Strength Tests
2.4. Abrasive Wear Resistance Tests
3. Results and Discussion
3.1. Metallographic Examinations Results
3.1.1. Light Microscopy Analysis
3.1.2. Stereological Analysis of the Carbide Phase
3.1.3. SEM Analysis
3.1.4. Fracture Analysis
3.2. Hardness and Impact Strength Test Results
3.3. Abrasive Wear Resistance Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bedolla-Jacuinde, A.; Correa, R.; Quezada, J.G.; Maldonado, C. Effect of titanium on the as-cast microstructure of a 16%chromium white iron. Mater. Sci. Eng. A 2005, 398, 297–308. [Google Scholar] [CrossRef]
- Dojka, M.; Kondracki, M.; Studnicki, A.; Dojka, R. Crystallization process of high chromium cast iron with the addition of Ti and Sr. Arch. Foundry Eng. 2018, 18, 57–64. [Google Scholar] [CrossRef]
- Dojka, M.; Dojka, R.; Stawarz, M.; Studnicki, A. Influence of Ti and REE on Primary Crystallization and Wear Resistance of Chromium Cast Iron. J. Mater. Eng. Perform. 2019, 28, 4002–4011. [Google Scholar] [CrossRef] [Green Version]
- Bedolla-Jacuinde, A.; Aguilar, S.L.; Hernandez, B. Eutectic Modification in a Low-Chromium White Cast Iron by a Mixture of Titanium, Rare Earths, and Bismuth: I. Effect on Microstructure. J. Mater. Eng. Perform. 2005, 14, 149–157. [Google Scholar] [CrossRef]
- Bedolla-Jacuinde, A.; Aguilar, S.L.; Maldonado, C. Eutectic Modification in a Low-Chromium White Cast Iron by a Mixture of Titanium, Rare Earths, and Bismuth: Part II. Effect on the Wear Behavior. J. Mater. Eng. Perform. 2005, 14, 301–306. [Google Scholar] [CrossRef]
- Chung, R.J.; Tang, X.; Li, D.Y.; Hinckley, B.; Dolman, K. Microstructure refinement of hypereutectic high Cr cast irons using hard carbide-forming elements for improved wear resistance. Wear 2013, 301, 695–706. [Google Scholar] [CrossRef]
- Guo, E.; Wang, L.; Wang, L.; Huang, Y. Effects of RE, V, Ti and B composite modification on the microstructure and properties of high chromium cast iron containing 3% molybdenum. Rare Met. 2009, 28, 606–611. [Google Scholar] [CrossRef]
- Kopyciński, D.; Piasny, S. Influence of Inoculation on Structure of Chromium Cast Iron. In Characterization of Minerals, Metals, and Materials 2016; Ikhmayies, S.J., Ed.; Springer Science and Business Media LLC: Berlin, Germany, 2016; pp. 705–712. [Google Scholar]
- Kopyciński, D. Inoculation of chromium white cast iron. Arch. Foundry Eng. 2009, 9, 191–194. [Google Scholar]
- Zhi, X.; Liu, J.; Xing, J.; Ma, S. Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron. Mater. Sci. Eng. A 2014, 603, 98–103. [Google Scholar] [CrossRef]
- Chang, L.; Liu, J.; Zhang, R.; Wang, J. Influence of RE Modification on Impact Fatigue Property of Low Alloy Wear Resistant Cast Iron. J. Mater. Sci. Eng. B 2014, 4, 606–611. [Google Scholar]
- Hao, F.; Li, D.; Dan, T.; Ren, X.; Liao, C.B.; Yang, Q. Effect of rare earth oxides on the morphology of carbides in hardfacing metal of high chromium cast iron. J. Rare Earths 2011, 29, 168–172. [Google Scholar] [CrossRef]
- Jura, S. Model Studies on Metal Modification Processes; Politechnika Śląska: Gliwice, Poland, 1968. (In Polish) [Google Scholar]
- Moumeni, E.; Tiedje, N.S.; Hattel, J.H. Effect of titanium on the near eutectic grey iron. In Proceedings of the Abstract from 12th International Foundrymen Conference, Opatija, Croatia, 25–27 May 2012. [Google Scholar]
- Larrañaga, P.; Sertucha, J.; Loizaga, A.; Suárez, R.; Stefanescu, D.M. Gray Cast Iron with High Austenite-to-Eutectic Ratio Part II–Increasing the Austenite-to-Eutectic Ratio through Austenite Nucleation. AFS Trans. 2012, 120, 337–346. [Google Scholar]
- Larrañaga, P.; Sertucha, J.; Loizaga, A.; Suárez, R.; Stefanescu, D.M. Gray Cast Iron with High Austenite-to-Eutectic Ratio Part III—High Strength, Low Hardness, High Carbon Equivalent Gray Iron with Superfine Graphite. AFS Trans. 2012, 120, 347–353. [Google Scholar]
- Alonso, G.; Stefanescu, D.M.; Larrañaga, P.; Suarez, R. Graphite Nucleation in Compacted Graphite Cast Iron. Int. J. Met. 2020, 1–10. [Google Scholar] [CrossRef]
- Mao, X. Titanium Microalloyed Steel: Fundamentals, Technology, and Products; Springer Science and Business Media LLC: Berlin, Germany, 2019. [Google Scholar]
- Dojka, M.; Dojka, R.; Studnicki, A. Department of a New ATD-P Tester for Hard Wear Resistant Materials. Arch. Foundry Eng. 2017, 17, 37–40. [Google Scholar] [CrossRef] [Green Version]
- Stawarz, M.; Dojka, M.; Janerka, K. High silicon cast iron wear resistance for metal - mineral system. In Proceedings of the METAL 2016 25th Anniversary International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; Tanger: Ostrava, Czech Republic, 2016; pp. 229–233. [Google Scholar]
- Studnicki, A.; Gromczyk, M.; Kondracki, M.; Suchoń, J.; Szajnar, J. Primary Crystallization Studies and Abrasion Analysis of Cr-Ni-Mo Cast Steel. Arch. Foundry Eng. 2015, 15, 75–80. [Google Scholar] [CrossRef]
- Podrzucki, C. Cast Iron; ZG STOP: Kraków, Poland, 1991. (In Polish) [Google Scholar]
- Riposan, I.; Chisamera, M.; Stan, S. The Role of Compounds in Graphite Formation in Cast Iron—A Review. Mater. Sci. Forum 2018, 925, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Riposan, I.; Chisamera, M.; Stan, S.; Skaland, T.A. New Approach to Graphite Nucleation Mechanism in Gray Irons. In Proceedings of the AFS Cast Iron Inoculation Conference, Schaumburg, IL, USA, 29–30 September 2005; American Foundry Society: Schaumburg, IL, USA, 2005. [Google Scholar]
- Campbell, J. Complete Casting Handbook. Metal. Casting Processes, Metallurgy, Techniques and Design, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Dojka, R.; Jezierski, J.; Campbell, J. Optimized Gating System for Steel Castings. J. Mater. Eng. Perform. 2018, 27, 5152–5163. [Google Scholar] [CrossRef] [Green Version]
- Bruna, M.; Remisova, A.; Dojka, R. Influence of pouring and geometry of a gating system on quality of castings. Slévárenství 2020, 1, 8–13. [Google Scholar]
- Runyoro, J.; Boutorabi, S.M.A. Campbell, J. Critical gate velocities for film-forming casting alloys: A basic for process specification. AFS Trans. 1992, 100, 225–234. [Google Scholar]
- Liu, L.; Samuel, F.H. Effect of inclusions on the tensile properties of Al–7% Si–0.35% Mg (A356.2) aluminium casting alloy. J. Mater. Sci. 1998, 33, 2269–2281. [Google Scholar] [CrossRef]
- Kasala, J.; Pernis, R.; Čaplovič, L. Influence of gating system design on tensile properties of AlSi7Mg0.3 alloy. Arch. Foundry Eng. 2010, 10, 117–120. [Google Scholar]
- Gokhale, A.M.; Patel, G.R. Origins of variability in the fracture-related mechanical properties of a tilt-pour-permanent-mold cast Al-alloy. Scr. Mater. 2005, 52, 237–241. [Google Scholar] [CrossRef]
- Dispinar, D.; Kahruman, C.; Campbell, J. Correlation between Bifilm Index and Toughness of Aluminum Alloys. In Proceedings of the Shape Casting: 5th International Symposium 2014; Springer Science and Business Media LLC: Berlin, Germany, 2014; pp. 171–176. [Google Scholar]
- Dojka, R.; Jezierski, J.; Tiedje, N.S. Geometric Form of Gating System Elements and Its Influence on the Initial Filling Phase. J. Mater. Eng. Perform. 2019, 28, 3922–3928. [Google Scholar] [CrossRef] [Green Version]
- Jezierski, J.; Dojka, R.; Janerka, K. Optimizing the Gating System for Steel Castings. Metals 2018, 8, 266. [Google Scholar] [CrossRef] [Green Version]
C | Cr | Ti | Mn | Si | Ni | Mo | Al | V | Zr | S | P | Nb | Cu | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W1 | 2.85 | 20.4 | 0.01 | 0.39 | 0.66 | 1.48 | 0.57 | 0.22 | 0.13 | 0.24 | 0.02 | 0.05 | 0.07 | 0.03 | bal* |
Ti05 | 2.96 | 20.5 | 0.17 | 0.42 | 0.85 | 1.42 | 0.55 | 0.18 | 0.13 | 0.28 | 0.02 | 0.05 | 0.09 | 0.03 | bal* |
Ti1 | 3.12 | 19 | 0.46 | 0.39 | 0.79 | 1.49 | 0.59 | 0.12 | 0.15 | 0.29 | 0.03 | 0.05 | 0.11 | 0.03 | bal* |
Ti2 | 3.09 | 19.6 | 1.08 | 0.35 | 0.82 | 1.46 | 0.59 | 0.16 | 0.17 | 0.28 | 0.03 | 0.05 | 0.14 | 0.03 | bal* |
Sample | HRC (Rockwell Hardness) Values | HRC Average | ||
---|---|---|---|---|
W0 | 49 | 52 | 52 | 51 |
Ti05 | 50 | 54 | 53 | 52 |
Ti1 | 55 | 53 | 54 | 54 |
Ti2 | 61 | 53 | 54 | 56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dojka, M.; Stawarz, M. Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials 2020, 13, 3124. https://doi.org/10.3390/ma13143124
Dojka M, Stawarz M. Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials. 2020; 13(14):3124. https://doi.org/10.3390/ma13143124
Chicago/Turabian StyleDojka, Malwina, and Marcin Stawarz. 2020. "Bifilm Defects in Ti-Inoculated Chromium White Cast Iron" Materials 13, no. 14: 3124. https://doi.org/10.3390/ma13143124
APA StyleDojka, M., & Stawarz, M. (2020). Bifilm Defects in Ti-Inoculated Chromium White Cast Iron. Materials, 13(14), 3124. https://doi.org/10.3390/ma13143124