Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review
Abstract
:1. Introduction
2. Management Practices for MSWI Ashes
3. MSWI Ashes as Construction Materials
3.1. Properties of MSWI Ashes
3.1.1. MSWi BA
3.1.2. MSWI FA
3.2. Hot Mix Asphalt (HMA) Applications
3.2.1. Designs and Properties
3.2.2. Field Applications
3.3. Cement and Concrete Applications
3.3.1. Cement Production (Cement Clinker)
3.3.2. Cement Paste (Blended Cement)
3.3.3. PCC
3.4. Geomaterial Applications
Property | RDF FA (J. D. Hamernik et al. 1991) [128] | MB FA (S. Remond et al. 2002) [62] | MB FA (Z. Yang et al. 2018) [135] | MB BA (X. G. Li et al. 2012) [129] | RDF BA (J. An et al. 2017) [130] | MB BA (Z. Yang et al. 2018) [135] | Portland Cement [137,159] | Chemical Requirements for Pozzolanic Material |
---|---|---|---|---|---|---|---|---|
Treatment | N/A | N/A | Prewashing | Magnetic separation | N/A | Magnetic separation | N/A | |
SiO2, % | 38.03 | 27.23 | 4.5 | 59.59 | 15.8 | 53.8 | 21.49 | SiO2 + Fe2O2 + Al2O3, (Class N pozzolan: 70 min., Class F: 50 min., Class C: 50 min.) CaO, (Class N pozzolan: report only, Class F: 18.0 max., Class C: 18 min.) SO3, (Class N pozzolan: 4.0 max., Class F: 5.0 max., Class C: 5 max.) |
Al2O3, % | 14.65 | 11.72 | 1.6 | 18.61 | 5.7 | 8.7 | 4.21 | |
Fe2O3, % | 3.43 | 1.80 | - | 5.50 | 3.61 | - | 3.50 | |
CaO, % | 20.17 | 16.42 | 60.6 | 7.58 | 48.6 | 14.3 | 64.90 | |
MgO, % | 2.19 | 2.52 | 1.7 | 1.32 | 3.06 | 1.9 | - | |
SO3, % | 2.82 | 3.00 | 5.5 | 0.65 | 9.96 | 0.3 | 0.70 | |
Na2O, % | 2.47 | 5.86 | 0.3 | 1.32 | 5.63 | 11.7 | - | |
K2O, % | 0.74 | 5.80 | 0.5 | 2.29 | 1.13 | 1.1 | - | |
ZnO, % | - | - | - | - | 0.75 | - | - | |
Cl, % | - | 7.2 | 1.3 | - | 2.2 | 0.6 | - | |
Other, % | 5.4 | 1.46 | 0.6 | - | 6.61 | 1.7 | 5.2 | |
Loss of ignition, % | 10.10 | 13.0 | 20.3 | 0.43 | - | - | - | LOI, (Class N pozzolan: 10 max., Class F, C: 6 max.) |
SiO2 + Fe2O2 + Al2O3 | 56.11 | 40.75 | 6.1 | 83.7 | 25.11 | 62.5 | 29.2 | |
Percentage of cement replacement (%) | 35% replacement | 5–20% replacement | 10–50% replacement | 10–50% replacement | 10–100% replacement | 10–50% replacement | ||
Water/Cement | Depends on water demand | 0.5 | Depends on water demand | Depends on water demand | 0.5 | Depends on water demand | 0.5 | |
Water demand (%) | 30.27 | - | 29.5–35.8 | 26.0–29.3 | - | 27.3–23.3 | 26.2–32.0 | |
Setting time, mins (initial and final) | Initial: exceed 1728 | Initial: 420–1860, Final: 540–2460 | Initial: 235–210, Final: 293–282 | Initial: 206–258, Final: 258–350 | Initial: 313–240, Final: 546–1860 | Initial: 207–246, Final: 269–302 | Initial: 26.7–264, Final: N/A | |
28-d compressive strength, MPa, (%, ratio to control) | 26.95 (97.3%) | 62 (107%)–55 (95%) | 46.5 (73.8%)–17.1 (27.1%) | 45.9 (88%)–34.6 (66%) | 15.4 (76%)–2.8 (10%) | 53.2 (84.4%)–29.1 (46.2%) | 38.9–58.4 |
MB BA (J. Pera et al. 1997) [141] | MB BA (N.B. Chang et al.1999) [142] | RDF BA (N.B. Chang et al.1999) [142] | MB FA (J. Aubert et al. 2004) [143] | MB BA (B. Juric et al. 2006) [144] | RDF BA (G. Wegen et al. 2013) [146] | RDF BA (A. Abba et al. 2014) [147] | RDF BA (J. An et al. 2017) [130] | Normal Concrete [159] | ||
---|---|---|---|---|---|---|---|---|---|---|
Type of ash | BA | BA | BA | FA | BA | BA | BA | BA | (Granite for coarse aggregate) | |
Type of replacement | Coarse aggregate | Fine aggregate | Fine aggregate | Cement | Cement | Coase aggregate | Coarse aggregate | Fine aggregate | - | |
SiO2 (wt.%) | 54.6 | 18.6 | 19.8 | 20.67 | 24 | - | 42 | 15.80 | - | |
CaO (wt.%) | 11.1 | 34.6 | 44.6 | 25.23 | 39 | - | 18 | 48.60 | - | |
Size | 4–20 mm | 0.075–4.75 mm | 0.075–4.75 mm | 6–200 µm | 0.063–8 mm | 2–12 mm | 0–10 mm | 0.075–4.75 mm | ||
Water absorption (%) | 2.36 | 7.4 | 9 | - | - | 7.1–11 | - | 12.8 | 0.60 | |
Fineness modulus | - | 3.59 | 3.34 | - | - | - | - | 2.52 | - | |
Density (kg/m3) | 2.21 | 2.27 | 2.38 | 2.26 | - | 2.09–2.23 | - | 2.20 | 2.69 | |
Specific area (m2/g) | - | - | - | 2.26 | - | - | - | - | - | |
Mix proportion (cement:fine:coarse) | 1:3.21:3.17 | 1:2:4 | 1:2:4 | 1:2.73:4.15 | 1:3:0 (Mortar mix) | 1:2:3.8 | 1:2.2:2.5 | 1:2.11:2.64 | 1:2.08:2.29 | |
W/B (binder) | 0.63 | 0.7 | 0.7 | 0.73 | 0.55 | 0.5 | 0.75 | 0.5 | 0.5 | |
Level of replacement | 50% and100% of coarse aggregate | 100% of fine aggregate | 100% of fine aggregate | 12.5% and 50% of cement | 5–40% of cement | 20% of coarse aggregate | 50% of fine gravel | 10–50% of fine aggregate | - | |
Slump (mm) | 145 | 10 | 20 | 65 and 75 | 55 | 150 | similar to the control | 130–200 | 150 | |
Compressive strength, MPa, (%, ratio to control) | 3 d | - | 5.77 (52.6%) | 8.95 (81.59%) | - | - | 20.0 (90%) | - | - | - |
7 d | 20.8 (81.4%)–17.0 (60.7%) | 7.22 (43.83%) | 10.54 (64.03%) | 26 (81.3%)–6 (18.8%) | 34.7 (109%)–26.3 (69%) | - | - | - | 22.3 | |
28 d | 29.9 (90.9%)–22.3 (67.8%) | 10.70 (45.16%) | 15.31 (64.65%) | 33 (82.5%)–8 (20%) | 49.5 (99%)–39.8 (79%) | 39.5 (84%) | 22.70 (101.8%) | 48.5 (95.6%) –21.8 (43.0%) | 32.1 | |
90 d | 34.6 (82.8%)–28.4 (67.9%) | - | - | 29 (76%)–8 (21%) | - | 47.4 (89.7%) | - | - | - | |
Shrinkage, ratio to control | 250 µm/m, 76% | - | - | - | - | Smaller than control | - | Volumetric expansion | - | |
Porosity (%) | - | - | - | 14.5–25.0 | 15.9–17.2 | - | - | 11.6–18.43 | - |
Location | Project Description | Performance Notes |
---|---|---|
Skaelskor, Denmark [28] | Unbound subbase materials for heavy traffic road pavements in 1976 | In 2001, exhibited good condition with low rutting |
Le Mans, France [41] | Unbound subbase materials for urban road in 1978 | In 2001, exhibited good deflection, compaction, and grading properties |
Linkoeping, Sweden [160] | Unbound subbase materials for road pavement in 1987 | In 2006, exhibited suitable performance with stable stiffness |
Umea, Sweden [161] | Unbound subbase materials for asphalt road pavement in 2001 | In 2006, exhibited suitable performance |
Milan, Italy [162] | 20% BA mixed with gravel for road foundation constructed in 2005 | In 2014, exhibited usable performance |
Newcastle, UK [163] | Sand replacement protection liner at Burnhills landfill in 2001 | Stable performance and positive shear properties |
Rochester, U.S. [28] | Unbound subbase materials for low traffic access road | Normal performance after 1.5 years |
Shelton, U.S. [164] | Filling materials for landfill road | Good structural properties with small settlement |
4. Environmental Effects of MSWI Ashes as Construction Materials
4.1. Leaching Properties and Regulations
4.2. Reduced Leachate for HMA and PCC Applications
5. Conclusions and Recommendations
- Despite the large amount of MSWI ash generation and numerous positive research results related to the reusability of MSWI ash, the U.S. has a less active recycling program than European countries. In general, the U.S.’s current practice of MSWI management involves combining MSWI BA and FA, followed by disposal in landfills. Because most of the toxic substances come from the MSWI FA, the separate handling of the BA and FA would be more effective for the reuse process.
- The use of the ash in geomaterial applications, e.g., road subbase/subgrade and backfill materials, yields good engineering performance; however, leachates released by the direct contact with water (rainfall, runoff, surface water infiltration, etc.) pose environmental concerns.
- Reusing the MSWI ash in an HMA mixture can be a feasible option if the ashes replace <20% of the natural aggregate. Although few field applications have been reported in recent years, the field experience and short-/long-term performance over the past century in the U.S. indicate reasonable durability. However, this asphalt application requires the addition of an asphalt binder owing to the high absorption characteristics of MSWI ashes, which is not cost-effective.
- Incorporating the MSWI ashes into cement/concrete composites appears to be the most promising option because of the cementation effect, which results in not only a significant reduction in the release of toxic elements but also adequate structural integrity. MSWI ashes are also viable as raw materials for cement clinkers, SCMs, and aggregate replacement from an engineering-performance viewpoint.
- Considering the wide range of constituents of MSWI ashes depending on the source and feeding materials to incineration, proper chemical characterization of the ashes is necessary for the concrete application. Regarding the concrete’s filler materials, deteriorating substances such as metallic Al, Cl, and highly soluble salts can be identified and selectively removed prior to the use of the ash in concrete. Weathering and/or proper pretreatment processes are recommended for diminishing side effects such as H2-gas emission in the cement/concrete application.
- The development of standardized quality-control protocols, along with in-depth ingredient analysis and blending manuals for MSWI ashes from diverse sources, is recommended for promoting the application of MSWI ash in the field.
Author Contributions
Funding
Conflicts of Interest
References
- Wiles, C.C. Municipal Solid Waste Combustion Ash: State-of-the-Knowledge. J. Hazard. Mater. 1996, 47, 325–344. [Google Scholar] [CrossRef]
- Chandler, A.J.; Eighmy, T.T.; Hartlén, J.; Helmar, O.; Kosson, D.S.; Sawell, S.E.; van der Sloot, H.A.; Vehlow, J. Municipal Solid Waste Incinerator Residues; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Wiles, C.; Shepherd, P. Beneficial Use and Recycling of Municipal Waste Combustion Residues—A Comprehensive Resource Document; National Renewable Energy Laboratory (NREL): Boulder, CO, USA, 1999.
- Crillesen, K.; Skaarup, J.; Bojsen, K. Management of Bottom Ash from WTE Plants; International Solid Waste Association (ISWA); Working Group Thermal Treatment: Copenhagen, Denmark, 2006. [Google Scholar]
- Astrup, T. Management of APC Residues from W-t-E Plants; International Solid Waste Association (ISWA); Working Group on Thermal Treatment of Waste: Copenhagen, Denmark, 2008. [Google Scholar]
- Psomopoulos, C.S.; Bourka, A.; Themelis, N.J. Waste-to-Energy: A Review of the Status and Benefits in USA. Waste Manag. 2009, 29, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Hasselriis, F. Waste-to-Energy Ash Management in the United States. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012; pp. 11737–11758. [Google Scholar]
- Vehlow, J. Waste-to-Energy Ash Management in Europe. In Encyclopedia of Sustainability Science and Technology; Springer: New York, NY, USA, 2012; pp. 11720–11736. [Google Scholar]
- OECD Annual Report 2007; The Organisation for Economic Co-operation and Development (OECD): Paris, France, 2007.
- EPA. Municipal Solid Waste Generation, Recycling, and Disposal in the United States: Facts and Figures for 2010; U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 2011.
- Michaels, T. The 2010 ERC Directory of Waste-to-Energy Plants; Energy Recovery Council: Washington, DC, USA, 2010. [Google Scholar]
- Council, E.R. The 2018 ERC Directory of Waste-to-Energy Facilities; Energy Recovery Council: Washington, DC, USA, 2018. [Google Scholar]
- Khalid, M. An Investigation into the Treatment and Moddeling of Municipal Solid Waste Incineration (MSWI) Air Pollution APC Residues; University of East London: London, UK, 2019. [Google Scholar]
- Quina, M.J.; Bordado, J.C.; Quinta-Ferreira, R.M. Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manag. 2008, 28, 2097–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Tyagi, V.; Allen, T.; Ibrahim, M.H.; Kothari, R. An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 2011, 15, 4797–4808. [Google Scholar] [CrossRef]
- Millrath, K.; Roethel, F.J.; Kargbo, D.M. Waste-To-Energy Residues—The Search for Beneficial Uses. In Proceedings of the 12th North American Waste To Energy Conference (NAWTEC 12), Savannah, GA, USA, 17–19 May 2004. [Google Scholar]
- Ferreira, C.; Ribeiro, A.; Ottosen, L. Heavy metals in MSW incineration fly ashes. In Proceedings of the Journal de Physique IV (Proceedings), Grenoble, France, 26–30 May 2003; pp. 463–466. [Google Scholar]
- Deng, D.; Qiao, J.; Liu, M.; Kołodyńska, D.; Zhang, M.; Dionysiou, D.D.; Ju, Y.; Ma, J.; Chang, M.-B. Detoxification of municipal solid waste incinerator (MSWI) fly ash by single-mode microwave (MW) irradiation: Addition of urea on the degradation of Dioxin and mechanism. J. Hazard. Mater. 2019, 369, 279–289. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Liu, B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review. J. Clean. Prod. 2020, 250, 119507. [Google Scholar] [CrossRef]
- Li, J.; Wang, C.; Du, L.; Lv, Z.; Li, X.; Hu, X.; Niu, Z.; Zhang, Y. Did municipal solid waste landfill have obvious influence on polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air: A case study in East China. Waste Manag. 2017, 62, 169–176. [Google Scholar] [CrossRef]
- Villa, A.L.; Quintero, A.; Pemberthy, D. Dioxins and Furans: Environmental Contamination and Regulatory Status in Colombia. In Persistent Organic Chemicals in the Environment: Status and Trends in the Pacific Basin Countries II Temporal Trends; ACS Publications: Washington, DC, USA, 2016; pp. 49–72. [Google Scholar]
- Tillman, D.A.; Rossi, A.J.; Vick, K.M. Incineration of Municipal and Hazardous Solid Wastes; Academic Press, Inc.: San Diego, CA, USA, 1989. [Google Scholar]
- Luo, H.; Cheng, Y.; He, D.; Yang, E.-H. Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci. Total Environ. 2019, 668, 90–103. [Google Scholar] [CrossRef]
- Lam, G.H.K.; Ip, A.W.M.; Barford, J.P.; McKay, G. Use of Incineration MSW Ash: A Review. Sustainability 2010, 2, 1943–1968. [Google Scholar] [CrossRef] [Green Version]
- Siddique, R. Use of Municipal Solid Waste Ash in Concrete. Resour. Conserv. Recycl. 2010, 55, 83–91. [Google Scholar] [CrossRef]
- Atoo, A.A.; Momoh, E.O.; Audu, H.S. The use of municipal solid waste ash as partial replacement of quarry dust in concrete production. Development 2018, 5, 152–159. [Google Scholar]
- Lynn, C.J.; Dhir Obe, R.K.; Ghataora, G.S. Municipal incinerated bottom ash characteristics and potential for use as aggregate in concrete. Constr. Build. Mater. 2016, 127, 504–517. [Google Scholar] [CrossRef]
- Lynn, C.J.; Ghataora, G.S.; Dhir Obe, R.K. Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements. Int. J. Pavement Res. Technol. 2017, 10, 185–201. [Google Scholar] [CrossRef]
- Santagata, E.; Bassani, M.; Baglieri, O. Use of vitrified municipal solid waste bottom ash as a filler substitute in asphalt mixtures. In Sustainability, Eco-Efficiency and Conservation in Transportation Infrastructure Asset Management, Proceedings of the 3rd International Conference on Transportation Infrastructure, ICTI, Pisa, Italy, 22–25 April 2014; CRC Press: Boca Raton, FL, USA, 2014; pp. 15–21. [Google Scholar]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F. Status and opportunities for energy recovery from municipal solid waste in Europe. Waste Biomass Valorization 2019, 10, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; An, J.; Nam, B.H.; Tasneem, K.M. Investigation on the side effects of municipal solid waste incineration ashes when used as mineral addition in cement-based material. Road Mater. Pavement Des. 2016, 17, 345–364. [Google Scholar] [CrossRef]
- Oehmig, W.N.; Roessler, J.G.; Blaisi, N.I.; Townsend, T.G. Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environ. Sci. Policy 2015, 51, 304–312. [Google Scholar] [CrossRef]
- Dou, X.; Ren, F.; Nguyen, M.Q.; Ahamed, A.; Yin, K.; Chan, W.P.; Chang, V.W.-C. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew. Sustain. Energy Rev. 2017, 79, 24–38. [Google Scholar] [CrossRef]
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [CrossRef]
- Schollbach, K.; Alam, Q.; Brouwers, H. Mineralogical analysis of MSWI bottom ash. In Proceedings of the 4th International Conference on Sustainable Solid Waste Management, Lymasol, Cyprus, 23–25 June 2016. [Google Scholar]
- Holm, O.; Simon, F.-G. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manag. 2017, 59, 229–236. [Google Scholar] [CrossRef]
- Diliberto, C.; Meux, E.; Diliberto, S.; Garoux, L.; Marcadier, E.; Rizet, L.; Lecomte, A. A zero-waste process for the management of MSWI fly ashes: Production of ordinary Portland cement. Environ. Technol. 2020, 41, 1199–1208. [Google Scholar] [CrossRef]
- Van Praagh, M.; Johansson, M.; Fagerqvist, J.; Grönholm, R.; Hansson, N.; Svensson, H. Recycling of MSWI-bottom ash in paved constructions in Sweden–A risk assessment. Waste Manag. 2018, 79, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Speiser, C.; Baumann, T.; Niessner, R. Morphological and Chemical Characterization of Calcium-Hydrate Phases Formed in Alteration Processes of Deposited Municipal Solid Waste Incinerator Bottom Ash. Environ. Sci. Technol. 2000, 34, 5030–5037. [Google Scholar] [CrossRef]
- Qiao, X.C.; Tyrer, M.; Poon, C.S.; Cheeseman, C.R. Novel Cementitious Materials Produced from Incinerator Bottom Ash. Resour. Conserv. Recycl. 2008, 52, 496–510. [Google Scholar] [CrossRef]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the Chemical and Mineralogical Properties of the Inorganic Portion of MSWI Bottom Ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef]
- Wei, Y.; Shimaoka, T.; Saffarzadeh, A.; Takahashi, F. Mineralogical Characterization of Municipal Solid Waste Incineration Bottom Ash with an Emphasis on Heavy Metal-bearing Phases. J. Hazard. Mater. 2011, 187, 534–543. [Google Scholar] [CrossRef]
- Bertolini, L.; Carsana, M.; Cassago, D.; Quadrio Curzio, A.; Collepardi, M. MSWI Ashes as Mineral Additions in Concrete. Cem. Concr. Res. 2004, 34, 1899–1906. [Google Scholar] [CrossRef]
- Müller, U.; Rübner, K. The Microstructure of Concrete Made with Municipal Waste Incinerator Bottom Ash as an Aggregate Component. Cem. Concr. Res. 2006, 36, 1434–1443. [Google Scholar] [CrossRef]
- Grosso, M.; Biganzoli, L.; Rigamonti, L. A Quantitative Estimate of Potential Aluminium Recovery from Incineration Bottom Ashes. Resour. Conserv. Recycl. 2011, 55, 1178–1184. [Google Scholar] [CrossRef]
- Biganzoli, L.; Ilyas, A.; Praagh, M.V.; Persson, K.M.; Grosso, M. Aluminium Recovery vs. Hydrogen Production as Resource Recovery Options for Fine MSWI Bottom Ash Fraction. Waste Manag. 2013, 33, 1174–1181. [Google Scholar] [CrossRef]
- Arickx, S.; Van Gerven, T.; Vandecasteele, C. Accelerated Carbonation for Treatment of MSWI Bottom Ash. J. Hazard. Mater. 2006, 137, 235–243. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon Dioxide Sequestration in Municipal Solid Waste Incinerator (MSWI) Bottom Ash. J. Hazard. Mater. 2006, 128, 73–79. [Google Scholar] [CrossRef]
- Arickx, S.; De Borger, V.; Van Gerven, T.; Vandecasteele, C. Effect of Carbonation on the Leaching of Organic Carbon and of Copper from MSWI Bottom Ash. Waste Manag. 2010, 30, 1296–1302. [Google Scholar] [CrossRef]
- Baciocchi, R.; Costa, G.; Lategano, E.; Marini, C.; Polettini, A.; Pomi, R.; Postorino, P.; Rocca, S. Accelerated Carbonation of Different Size Fractions of Bottom Ash from RDF Incineration. Waste Manag. 2010, 30, 1310–1317. [Google Scholar] [CrossRef]
- Santos, R.M.; Mertens, G.; Salman, M.; Cizer, Ö.; Van Gerven, T. Comparative Study of Ageing, Heat Treatment and Accelerated Carbonation for Stabilization of Municipal Solid Waste Incineration Bottom Ash in View of Reducing Regulated Heavy Metal/Metalloid Leaching. J. Environ. Manag. 2013, 128, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Integrated Pollution Prevention and Control: Reference Document on the Best Available Techniques for Waste Incineration; European Commission (EC): Brussels, Belgium, 2006.
- Alhassan, H.M.; Tanko, A.M. Characterization of Solid Waste Incinerator Bottom Ash and the Potential for its Use. Int. J. Eng. Res. Appl. (IJERA) 2012, 2, 516–522. [Google Scholar]
- Tay, J.H.; Goh, A.T.C. Engineering Properties of Incinerator Residue. J. Environ. Eng. 1991, 117, 224–235. [Google Scholar] [CrossRef]
- Goh, A.T.C.; Tay, J.H. Municipal Solid-Waste Incinerator Fly Ash for Geotechnical Applications. J. Geotech. Eng. 1993, 119, 811–825. [Google Scholar] [CrossRef]
- Yan, K.; Gao, F.; Sun, H.; Ge, D.; Yang, S. Effects of municipal solid waste incineration fly ash on the characterization of cement-stabilized macadam. Constr. Build. Mater. 2019, 207, 181–189. [Google Scholar] [CrossRef]
- Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; et al. Management of Municipal Solid Waste Incineration Residues. Waste Manag. 2003, 23, 61–88. [Google Scholar] [CrossRef]
- Penque, A. Examination of Chlorides in Municipal Solid Waste to Energy Combustion Residue: Origins, Fate and Potential for Treatment; Columbia University: New York, NY, USA, 2007. [Google Scholar]
- Du, B.; Li, J.; Fang, W.; Liu, Y.; Yu, S.; Li, Y.; Liu, J. Characterization of naturally aged cement-solidified MSWI fly ash. Waste Manag. 2018, 80, 101–111. [Google Scholar] [CrossRef]
- Hui, X.; Jiandong, M.; Ping, C.; Liangtong, Z.; Wang, Y.-Z. Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China. Eng. Geol. 2019, 255, 59–68. [Google Scholar]
- Xinghua, H.; Shujing, Z.; Hwang, J.-Y. Physical and chemical properties of MSWI fly ash. In Characterization of Minerals, Metals, and Materials 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 451–459. [Google Scholar]
- Rémond, S.; Pimienta, P.; Bentz, D.P. Effects of the incorporation of Municipal Solid Waste Incineration fly ash in cement pastes and mortars: I. Experimental study. Cem. Concr. Res. 2002, 32, 303–311. [Google Scholar] [CrossRef]
- Aubert, J.E.; Husson, B.; Vaquier, A. Metallic Aluminum in MSWI Fly Ash: Quantification and Influence on the Properties of Cement-based Products. Waste Manag. 2004, 24, 589–596. [Google Scholar] [CrossRef]
- Aubert, J.E.; Husson, B.; Sarramone, N. Utilization of Municipal Solid Waste Incineration (MSWI) Fly Ash in Blended Cement: Part 1: Processing and Characterization of MSWI Fly Ash. J. Hazard. Mater. 2006, 136, 624–631. [Google Scholar] [CrossRef]
- Aubert, J.E.; Husson, B.; Sarramone, N. Utilization of Municipal Solid Waste Incineration (MSWI) Fly Ash in Blended Cement: Part 2. Mechanical Strength of Mortars and Environmental Impact. J. Hazard. Mater. 2007, 146, 12–19. [Google Scholar] [CrossRef]
- Yan, K.; Li, L.; Ge, D. Research on properties of bitumen mortar containing municipal solid waste incineration fly ash. Constr. Build. Mater. 2019, 218, 657–666. [Google Scholar] [CrossRef]
- Snyder, R.R. Evaluation of Fused Incinerator Residue as a Paving Material; U.S. Dept. of Transportation, Federal Highway Administration, Offices of Research and Development, Implementation Division; National Technical Information Service: Washington, DC, USA, 1981; p. 33.
- Luo, H.-L.; Chen, S.-H.; Lin, D.-F.; Cai, X.-R. Use of incinerator bottom ash in open-graded asphalt concrete. Constr. Build. Mater. 2017, 149, 497–506. [Google Scholar] [CrossRef]
- Musselman, C.N.; Killeen, M.P.; Crimi, D.; Hasan, S.; Zhang, X.; Gress, D.L.; Eighmy, T.T. The Laconia, New Hampshire Bottom Ash Paving Project. In Studies in Environmental Science; Goumans, J.J.J.M., van der Sloot, H.A., Aalbers, T.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 60, pp. 315–328. [Google Scholar]
- Toraldo, E.; Mariani, E.; Topini, D.; Crispino, M. Long term performance of HMAs having up to 100% of municipal incinerator sands. In Bibumunous Mixtures and Pavements VII, Proceedings of the 7th International Conference ‘Bituminous Mixtures and Pavements’(7ICONFBMP), Thessaloniki, Greece, 12–14 June 2019; CRC Press: Boca Raton, FL, USA, 2019; p. 232. [Google Scholar]
- An, J.; Golestani, B.; Nam, B.H.; Lee, J.L. Sustainable Utilization of MSWI Bottom Ash as Road Construction Materials, Part I: Physical and Mechanical Evaluation. In Airfield and Highway Pavements 2015; American Society of Civil Engineers (ASCE): Miami, FL, USA, 7–10 June 2015; pp. 225–235. [Google Scholar] [CrossRef]
- Show, K.-Y.; Tay, J.-H.; Cheong, H.-K. Reuse of incinerator ash—current and future trends. In Sustainable Construction: Use of Incinerator Ash; Thomas Telford Publishing: London, UK, 2000; pp. 467–478. [Google Scholar] [CrossRef]
- Romeo, E.; Mantovani, L.; Tribaudino, M.; Montepara, A. Reuse of stabilized municipal solid waste incinerator fly ash in asphalt mixtures. J. Mater. Civ. Eng. 2018, 30, 04018157. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhu, X.; Li, L.; Wang, H. Effect of the Interfacial Zone on the Tensile-Damage Behavior of an Asphalt Mixture Containing MSWI Bottom Ash Aggregates. J. Mater. Civ. Eng. 2017, 29, 04016269. [Google Scholar] [CrossRef]
- Tang, P.; Florea, M.; Spiesz, P.; Brouwers, H. Application of thermally activated municipal solid waste incineration (MSWI) bottom ash fines as binder substitute. Cem. Concr. Compos. 2016, 70, 194–205. [Google Scholar] [CrossRef]
- Roberto, A.; Romeo, E.; Montepara, A.; Roncella, R. Effect of fillers and their fractional voids on fundamental fracture properties of asphalt mixtures and mastics. Road Mater. Pavement Des. 2020, 21, 25–41. [Google Scholar] [CrossRef]
- An, J.; Kim, J.; Golestani, B.; Tasneem, K.M.; Muhit BA, A.; Nam, B.H.; Behzadan, A.H. Evaluating the Use of Waste-to-Energy Bottom Ash as Road Construction Materials; Report Contract No: BDK78-977-20; State of Florida Department of Transportation: Tallahassee, FL, USA, 2014.
- Ogunro, V.O.; Inyang, H.I.; Hooper, F.; Young, D.; Oturkar, A. Gradation Control of Bottom Ash Aggregate in Superpave Bituminous Mixes. J. Mater. Civ. Eng. 2004, 16, 604–613. [Google Scholar] [CrossRef]
- Chen, J.-S.; Chu, P.-Y.; Chang, J.-E.; Lu, H.-C.; Wu, Z.-H.; Lin, K.-Y. Engineering and Environmental Characterization of Municipal Solid Waste Bottom Ash as an Aggregate Substitute Utilized for Asphalt Concrete. J. Mater. Civ. Eng. 2008, 20, 432–439. [Google Scholar] [CrossRef]
- Hassan, H.F.; Al-Shamsi, K. Characterisation of asphalt mixes containing MSW ash using the dynamic modulus |E*| test. Int. J. Pavement Eng. 2010, 11, 575–582. [Google Scholar] [CrossRef]
- Hassan, M.M.; Khalid, H. Mechanical and environmental characteristics of bituminous mixtures with incinerator bottom ash aggregates. Int. J. Pavement Eng. 2010, 11, 83–94. [Google Scholar] [CrossRef]
- Liu, D.; Li, L.; Cui, H. Utilization of municipal solid waste Incinerator Bottom Ash Aggregate in asphalt mixture. In Asphalt Pavements; Taylor & Francis Group: London, UK, 2014. [Google Scholar]
- Hassan, M.M.; Khalid, H.A. Compressive Deformation Behaviour of Asphalt Mixtures Containing Incinerator Bottom Ash Aggregate. Road Mater. Pavement Des. 2010, 11, 633–652. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, Y.; Li, L.; Du, Y.; Li, F. Identification of interfacial transition zone in asphalt concrete based on nano-scale metrology techniques. Mater. Des. 2017, 129, 91–102. [Google Scholar]
- Hassan, M.M.; Khalid, H. Mix design and rutting resistance of bituminous mixtures containing incinerator bottom ash aggregates. In Efficient Transportation and Pavement Systems: Characterization, Mechanisms, Simulation and Modelling, Proceedings of the 4th International Gulf Conference on Roads, Doha, Qatar, 10–13 November 2008; CRC Press: Boca Raton, FL, USA, 2008; pp. 603–612. [Google Scholar]
- Huang, C.-M.; Chiu, C.-T.; Li, K.-C.; Yang, W.-F. Physical and environmental properties of asphalt mixtures containing incinerator bottom ash. J. Hazard. Mater. 2006, 137, 1742–1749. [Google Scholar] [CrossRef]
- Toraldo, E.; Saponaro, S.; Careghini, A.; Mariani, E. Use of stabilized bottom ash for bound layers of road pavements. J. Environ. Manag. 2013, 121, 117–123. [Google Scholar] [CrossRef]
- Hassan, H.F. Recycling of municipal solid waste incinerator ash in hot-mix asphalt concrete. Constr. Build. Mater. 2005, 19, 91–98. [Google Scholar] [CrossRef]
- Xue, Y.; Hou, H.; Zhu, S.; Zha, J. Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: Pavement performance and environmental impact. Constr. Build. Mater. 2009, 23, 989–996. [Google Scholar] [CrossRef]
- Mallick, R.B.; Hendrix, G. Use of foamed asphalt in recycling incinerator ash for construction of stabilized base course. Resour. Conserv. Recycl. 2004, 42, 239–248. [Google Scholar] [CrossRef]
- Yang, J.-Z.; Yang, Y.; Li, Y.; Chen, L.; Zhang, J.; Die, Q.; Fang, Y.; Pan, Y.; Huang, Q. Leaching of metals from asphalt pavement incorporating municipal solid waste incineration fly ash. Environ. Sci. Pollut. Res. 2018, 25, 27106–27111. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y.-T. Metals Leaching in Permeable Asphalt Pavement with Municipal Solid Waste Ash Aggregate. Water 2019, 11, 2186. [Google Scholar] [CrossRef] [Green Version]
- WRAP. Recycling in BAA Maintenance and Construction Projects; Report; The Waste and Resources Action Programme (WRAP): London, UK, 1995. [Google Scholar]
- WRAP. Pavement Construction at Heathrow Terminal 5; Report; The Waste and Resources Action Programme (WRAP): London, UK, 2008. [Google Scholar]
- Sormunen, L.A.; Kolisoja, P. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study. Waste Manag. 2017, 64, 107–116. [Google Scholar] [CrossRef]
- The Management of Residues from Thermal Processes. In IEA Bioenergy; The International Energy Agency (IEA): Paris, France, 2001.
- Gress, D.; Zhang, X.; Tarr, S.; Pazienza, I.; Eighmy, T. Physical and environmental properties of asphalt-amended bottom ash. Transp. Res. Rec. J. Transp. Res. Board 1992, 10, 10. [Google Scholar]
- WRAP. A316 Resurfacing Pilot Project; Report; The Waste and Resources Action Programme (WRAP): London, UK, 2004. [Google Scholar]
- WRAP. Recycled and Secondary Aggregate Use in the Construction of a House Waste Recycling Centre and Access Road at Bar End Winchester; Report; The Waste and Resources Action Programme (WRAP): London, UK, 2004. [Google Scholar]
- Teague, D.J.; Ledbetter, W.B. Three Year Results on the Performance of Incinerator Residue as Bituminous Base; Report No. FHWA-RD-78-144; Federal Highway Administration: Washington, DC, USA, 1978.
- Abbott, J.; Coleman, P.; Howlett, L.; Wheeler, P. Environmental and Health Risk Associated with Use of Processed Incinerator Bottom Ash in Road Construction. In A Report Produced for BREWEB; AEA Technology Engironment: Harwell, UK, 2003; EMC-00-68. [Google Scholar]
- Hunsucker, D.Q. Design and Performance of a Bituminous Surface Mixture Containing Bottom Ash Aggregate; Report Number KTC-92-14; Kentucky Transportation Center, University of Kentucky: Lexington, KY, USA, 1992. [Google Scholar]
- WRAP. Performance of Processed Incinerator Bottom Ash with Both Recycled Asphalt and Recycled Concrete Aggregates as a 50/50 Blend in a Foamed Bitumen Mixture in a Perimeter Road at a Landfill Site; Report; The Waste and Resources Action Programme (WRAP): London, UK, 2004. [Google Scholar]
- Hill, A.R.; Dawson, A.R.; Mundy, M. Utilisation of aggregate materials in road construction and bulk fill. Resour. Conserv. Recycl. 2001, 32, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Pecqueur, G.; Crignon, C.; Quénée, B. Behaviour of cement-treated MSWI bottom ash. Waste Manag. 2001, 21, 229–233. [Google Scholar] [CrossRef]
- Forteza, R.; Far, M.; Seguí, C.; Cerdá, V. Characterization of Bottom Ash in Municipal Solid Waste Incinerators for Its Use in Road Base. Waste Manag. 2004, 24, 899–909. [Google Scholar] [CrossRef]
- TRL, A.-M. Alternative Materials in Road Construction Final Report for Publication. In European Commission Directorate General for Transport Under Framework Programme VI; Contract No. RO-97-SC.2238; Transport Research Laboratory (TRL): Wokingham, UK, 2001. [Google Scholar]
- Margallo, M.; Taddei, M.B.M.; Hernández-Pellón, A.; Aldaco, R.; Irabien, A. Environmental sustainability assessment of the management of municipal solid waste incineration residues: A review of the current situation. Clean Technol. Environ. Policy 2015, 17, 1333–1353. [Google Scholar] [CrossRef]
- Loginova, E.; Volkov, D.; Van De Wouw, P.; Florea, M.; Brouwers, H. Detailed characterization of particle size fractions of municipal solid waste incineration bottom ash. J. Clean. Prod. 2019, 207, 866–874. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Zhao, C.; Gupta, R. Physicochemical characterization and heavy metals leaching potential of municipal solid waste incinerated bottom ash (MSWI-BA) when utilized in road construction. Environ. Sci. Pollut. Res. 2020, 27, 14184–14197. [Google Scholar] [CrossRef]
- Vaitkus, A.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R. An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers. Constr. Build. Mater. 2019, 212, 456–466. [Google Scholar] [CrossRef]
- Seraj, S.; Nikravan, M.; Ramezanianpour, A.; Zendehdel, P.; Student, P. Evaluation of the Application of Municipal Solid Waste Incinerator (Mswi) Ash in Civil Engineering Using Sustainability Approach. In Proceedings of the Sixteenth International Waste Management and Landfill Symposium, Cagliari, Italy, 2–6 October 2017. [Google Scholar]
- Duckett, E.J.; Weiss, D. RDF as a Kiln Fuel. In Proceedings of the 1980 National Waste Processing Conference, 9th Biennial (New York: American Society of Mechanical Engineers, Washington, DC, USA, 11–14 May 1980. [Google Scholar]
- Saikia, N.; Kato, S.; Kojima, T. Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag. 2007, 27, 1178–1189. [Google Scholar] [CrossRef]
- Kikuchi, R. Recycling of municipal solid waste for cement production: Pilot-scale test for transforming incineration ash of solid waste into cement clinker. Resour. Conserv. Recycl. 2001, 31, 137–147. [Google Scholar] [CrossRef]
- Wang, L.; Jin, Y.; Nie, Y.; Li, R. Recycling of municipal solid waste incineration fly ash for ordinary Portland cement production: A real-scale test. Resour. Conserv. Recycl. 2010, 54, 1428–1435. [Google Scholar] [CrossRef]
- Pan, J.R.; Huang, C.; Kuo, J.J.; Lin, S.H. Recycling MSWI Bottom and Fly Ash as Raw Materials for Portland Cement. Waste Manag. 2008, 28, 1113–1118. [Google Scholar] [CrossRef]
- Ghouleh, Z.; Shao, Y. Turning municipal solid waste incineration into a cleaner cement production. J. Clean. Prod. 2018, 195, 268–279. [Google Scholar] [CrossRef]
- Lam, C.H.; Barford, J.P.; McKay, G. Utilization of Incineration Waste Ash Residues in Portland Cement Clinker. Chem. Eng. Trans. 2010, 21, 757–762. [Google Scholar]
- Prasad, M.N.V.; Shih, K. (Eds.) Environmental Materials and Waste: Resource Recovery and Pollution Prevention; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Joseph, A.M.; Snellings, R.; Van den Heede, P.; Matthys, S.; De Belie, N. The Use of Municipal Solid Waste Incineration Ash in Various Building Materials: A Belgian Point of View. Materials 2018, 11, 141. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review. Resour. Conserv. Recycl. 2019, 140, 23–35. [Google Scholar] [CrossRef]
- Lederer, J.; Bogush, A.; Fellner, J. The Utilization of Solid Residues from Municipal Solid Waste Incineration in the Cement Industry: A Review. In Proceedings of the Sardinia 2017, Sixteenth International Waste Manag. and Landfill Symposium, Cagliari, Italy, 2–6 October 2017. [Google Scholar]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; ThomasTelford Publishing, Thomas Telford Services Ltd.: Chester, UK, 1997. [Google Scholar]
- Darwin, D.; Mindess, S.; Young, J.F. Concrete; Prentice Hall: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Standard Specification for Portland Cement; C150/C150M-18; ASTM International: West Conshohocken, PA, USA, 2018.
- Siddique, R.; Khan, M.I. Supplementary Cementing Materials; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Jubal, D.H.; Gregory, C.F. Physical and Chemical Properties of Municipal Solid Waste Fly Ash. Mater. J. 1991, 88. [Google Scholar] [CrossRef]
- Li, X.G.; Lv, Y.; Ma, B.G.; Chen, Q.B.; Yin, X.B.; Jian, S.W. Utilization of Municipal Solid Waste Incineration Bottom Ash in Blended Cement. J. Clean. Prod. 2012, 32, 96–100. [Google Scholar] [CrossRef]
- An, J.; Kim, J.; Nam, B.H. Investigation on Impacts of Municipal Solid Waste Incineration Bottom Ash on Cement Hydration. ACI Mater. J. 2017, 114, 701–711. [Google Scholar] [CrossRef]
- Shih, P.-H.; Chang, J.-E.; Chiang, L.-C. Replacement of raw mix in cement production by municipal solid waste incineration ash. Cem. Concr. Res. 2003, 33, 1831–1836. [Google Scholar] [CrossRef]
- Shi, H.-S.; Deng, K.; Yuan, F.; Wu, K. Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash. J. Hazard. Mater. 2009, 169, 551–555. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Carcelen-Taboada, V.; Fernández-Jiménez, A.; Palomo, A. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater. 2016, 105, 218–226. [Google Scholar] [CrossRef]
- Zayed, A.M.; Brown, K.; Hanhan, A. Effect of Sulfur Trioxide Content on Concrete Structures using Florida Materials; Report No. 0510754, Final Report; Florida Department of Transportation: Tallahassee, FL, USA, 2004.
- Yang, Z.; Ji, R.; Liu, L.; Wang, X.; Zhang, Z. Recycling of municipal solid waste incineration by-product for cement composites preparation. Constr. Build. Mater. 2018, 162, 794–801. [Google Scholar] [CrossRef]
- Walker, H.N.; Lane, D.S.; Stutzman, P.E. Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual; Report No. FHWA-HRT-04-150; Virginia Department of Transportation: Richmond, VA, USA, 2006.
- Cho, B.H.; Khawaji, M.; Nam, B.H.; Alharbi, Y.; An, J. Static and Cyclic Flexural Behaviors of Edge-Oxidized Graphene Oxide Cement Composites. J. Mater. Civ. Eng. 2019, 31, 04019273. [Google Scholar] [CrossRef]
- ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2019.
- ACAA. Production and Use Survey Results News Release; American Coal Ash Association: Aurora, CO, USA, 2017. [Google Scholar]
- Rashid, R.A.; Frantz, G.C. MSW Incinerator Ash as Aggregate in Concrete and Masonry. J. Mater. Civ. Eng. 1992, 4, 353–368. [Google Scholar] [CrossRef]
- Pera, J.; Coutaz, L.; Ambroise, J.; Chababbet, M. Use of incinerator bottom ash in concrete. Cem. Concr. Res. 1997, 27, 1–5. [Google Scholar] [CrossRef]
- Chang, N.-B.; Wang, H.P.; Huang, W.L.; Lin, K.S. The assessment of reuse potential for municipal solid waste and refuse-derived fuel incineration ashes. Resour. Conserv. Recycl. 1999, 25, 255–270. [Google Scholar] [CrossRef]
- Aubert, J.E.; Husson, B.; Vaquier, A. Use of Municipal Solid Waste Incineration Fly Ash in Concrete. Cem. Concr. Res. 2004, 34, 957–963. [Google Scholar] [CrossRef]
- Jurič, B.; Hanžič, L.; Ilić, R.; Samec, N. Utilization of municipal solid waste bottom ash and recycled aggregate in concrete. Waste Manag. 2006, 26, 1436–1442. [Google Scholar] [CrossRef]
- Ferraris, M.; Salvo, M.; Ventrella, A.; Buzzi, L.; Veglia, M. Use of vitrified MSWI bottom ashes for concrete production. Waste Manag. 2009, 29, 1041–1047. [Google Scholar] [CrossRef]
- Gert van der Wegen, U.H.; Speerstra, J. Upgraded MSWI Bottom Ash as Aggregate in Concrete. Waste Biomass Valorization 2013, 4, 737–743. [Google Scholar] [CrossRef]
- Abbà, A.; Collivignarelli, M.C.; Sorlini, S.; Bruggi, M. On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Compos. Part B Eng. 2014, 58, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Akyıldız, A.; Köse, E.T.; Yıldız, A. Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Constr. Build. Mater. 2017, 138, 326–332. [Google Scholar] [CrossRef]
- Nagrockienė, D.; Daugėla, A. Investigation into the properties of concrete modified with biomass combustion fly ash. Constr. Build. Mater. 2018, 174, 369–375. [Google Scholar] [CrossRef]
- Kim, J.; Nam, B.H.; Muhit, B.A.A.; Tasneem, K.M.; An, J. Effect of chemical treatment of MSWI bottom ash for its use in concrete. Mag. Concr. Res. 2015, 67, 179–186. [Google Scholar] [CrossRef]
- Mohamedzein, Y.E.-A.; Al-Aghbari, M.Y.; Taha, R.A. Stabilization of desert sands using municipal solid waste incinerator ash. Geotech. Geol. Eng. 2006, 24, 1767–1780. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, J.; Shi, S.; Li, B.; Mo, J.; Tang, Q. Mechanical Properties of Municipal Solid Waste Incinerator (MSWI) Bottom Ash as Alternatives of Subgrade Materials. Adv. Civ. Eng. 2020, 2020. ID 9254516. [Google Scholar] [CrossRef]
- Zhang, Y.; Soleimanbeigi, A.; Likos, W.J.; Edil, T.B. Geotechnical and leaching properties of municipal solid waste incineration fly ash for use as embankment fill material. Transp. Res. Rec. 2016, 2579, 70–78. [Google Scholar] [CrossRef]
- Patil, S.; Bachhav, S.; Kshirsagar, D. Beneficial use of municipal solid waste ash in sub base in road costruction. Int. J. Eng. Invent. 2016, 5, 24–28. [Google Scholar]
- Bhavya, M.; Haritha, M.; Kumar, V.; Munilakshmi, N.; Sudharani, C.; Rao, K.M. A Study on Incinerator Ash as a Soil Stabilizer; International Journal of Engineering Technology Science and Research (IJETSR): Gujarat, India, 2015; Volume 2, Special Issue 2015. [Google Scholar]
- Singh, D.; Kumar, A. Geo-environmental application of municipal solid waste incinerator ash stabilized with cement. J. Rock Mech. Geotech. Eng. 2017, 9, 370–375. [Google Scholar] [CrossRef]
- Singh, D.; Kumar, T.; James, B.E.; Hanifa, M. Utilization of MSWI Ash for Geotechnical Applications: A Review. In Environmental Geotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 229–236. [Google Scholar]
- Saluja, S.; Dominic, M.; Gaur, A.; Ahmad, K.; Abbas, S. A Novel Approach in Selection of Municipal Solid Waste Incinerator (MSWI) Ash as an Embankment Material: VIKOR Method. In Smart Cities—Opportunities and Challenges; Springer: Berlin/Heidelberg, Germany, 2020; pp. 397–409. [Google Scholar]
- Khawaji, M.; Cho, B.H.; Nam, B.H.; Alharbi, Y.; An, J. Edge-Oxidized Graphene Oxide as Additive in Fiber-Reinforced Concrete: Effects on Fresh and Hardened Properties. J. Mater. Civ. Eng. 2020, 32, 04020028. [Google Scholar] [CrossRef]
- Bendz, D.; Arm, M.; Westberg, G.; Sjoestrand, K.; Lyth, M.; Wik, O.; Flyhammar, P. The Vaendoera test road, Sweden: A Case Study of Long-Term Properties of Roads Constructed with MSWI Bottom Ash; Projekt Vaendoera: En Studie av Laangtidsegenskaper hos Vaegar Anlagda Med Bottenaska Fraan Avfallsfoerbraenning; Technocal Report VARMWDORSK-964; Vaermeforsk: Stockholm, Sweden, 2006. [Google Scholar]
- Åberg, A.; Kumpiene, J.; Ecke, H. Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incineration (MSWI). Sci. Total Environ. 2006, 355, 1–12. [Google Scholar] [CrossRef]
- Toraldo, E.; Saponaro, S. A road pavement full-scale test track containing stabilized bottom ashes. Environ. Technol. 2015, 36, 1114–1122. [Google Scholar] [CrossRef] [Green Version]
- Allen, R. Burntwood bypass, Staffordshire: Design, construction and performance of road pavement made from incinerator bottom ash treated with PFA and lime–case study. In Performance of Bituminous and Hydraulic Materials in Pavements, Proceedings of the Fourth European Symposium, Bitmat4, Nottingham, UK, 11–12 April 2002; Routledge: Abingdon, UK, 2002; pp. 149–154. [Google Scholar]
- Lentz, D.; Demars, K.R.; Long, R.P.; Garrick, N.W. Performance and Analysis of Incinerator Bottom Ash as Structural Fill; University of Connecticut: Storrs, CT, USA, 1994. [Google Scholar]
- Shi, H.S.; Kan, L.L. Leaching Behavior of Heavy Metals from Municipal Solid Wastes Incineration (MSWI) Fly Ash Used in Concrete. J. Hazard. Mater. 2009, 164, 750–754. [Google Scholar] [CrossRef]
- Quina, M.J.; Bordado, J.C.M.; Quinta-Ferreira, R.M. Percolation and Batch Leaching Tests to Assess Release of Inorganic Pollutants from Municipal Solid Waste Incinerator Residues. Waste Manag. 2011, 31, 236–245. [Google Scholar] [CrossRef]
- Kida, A.; Noma, Y.; Imada, T. Chemical Speciation and Leaching Properties of Elements in Municipal Incinerator Ashes. Waste Manag. 1996, 16, 527–536. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Sirini, P.; Testa, F. Properties of Portland Cement—Stabilised MSWI fly ashes. J. Hazard. Mater. 2001, 88, 123–138. [Google Scholar] [CrossRef]
- Shim, Y.S.; Rhee, S.W.; Lee, W.K. Comparison of Leaching Characteristics of Heavy Metals from Bottom and Fly Ashes in Korea and Japan. Waste Manag. 2005, 25, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Hjelmar, O. How Can Ashes be Expected to Perform in Relation to End-of Waste Criteria for Waste-derived Aggregates? In Proceedings of the Ash Utilization 2012, Ashes in a Sustainable Society, Stockholm, Sweden, 25–27 January 2012. [Google Scholar]
- Guidance for the Sampling and Analysis of Municipal Waste Combustion Ash for the Toxicity Characteristic; U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 1995.
- RCRA Solid Waste Programs. Waste and Emergency Response; EPA530-K-02-019I; U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 2001.
- Leaching Characteristics of Building and Solid Waste Material, Leaching Tests, Determination of the Leaching of Inorganic Components from the Granular Materials with the Column Test; Nederlandse Norm NEN 7343; NEN standards: Delft, The Netherlands, 1995.
- Characterization of Waste. Leaching. Compliance Test for Leaching of Granular Waste Materials. Determination of the Leaching of Constituents from Granular Waste Materials and Sludges; prE 12457, Comité Européen de Normalisation (European National Standard) CEN/TC 292; Draft European Standard: Brussels, Belgium, 1996.
- German Standard Procedure for Water, Wastewater and Sediment Testing. Group S (Sludge and Sediment). Determination of Leachability (S4); Deutsches Institut für Normung (German Institute for Standardization) DIN 38414 DEV 4; Institüt für Normung: Berlin, Germany, 1984.
- Méhu, J.; Perrodin, Y.; Sarrazin, B.; Véron, J. French Approach Towards the Evaluation of Monolithic and Solidified Waste: Development of a New Leaching Procedure. In Studies in Environmental Science; Elsevier: Amsterdam, The Netherlands, 1991; Volume 48, pp. 293–300. [Google Scholar]
- Code of Federal Regulation CFR 40-261.24, EPA Toxicity Characteristics Data; U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 1987.
- EPA. Drinking Water Contaminants; EPA 816-F-09-0004; U.S. Environmental Protection Agency (U.S. EPA): Washington DC, USA, 2009.
- National Secondary Drinking Water Regulations; U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, USA, 1988.
- Sørensen, M.A.; Mogensen, E.P.B.; Lundtorp, K.; Jensen, D.L.; Christensen, T.H. High Temperature Co-treatment of Bottom Ash and Stabilized Fly Ashes from Waste Incineration. Waste Manag. 2001, 21, 555–562. [Google Scholar] [CrossRef]
- Ginés, O.; Chimenos, J.M.; Vizcarro, A.; Formosa, J.; Rosell, J.R. Combined Use of MSWI Bottom Ash and Fly Ash as Aggregate in Concrete Formulation: Environmental and Mechanical Considerations. J. Hazard. Mater. 2009, 169, 643–650. [Google Scholar] [CrossRef]
- del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate Material Formulated with MSWI bottom Ash and APC Fly ash for Use as Secondary Building Material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Kirkelund, G.M.; Joergensen, A.S.; Ingeman-Nielsen, T.; Villumsen, A. Characterisation of MSWI Bottom Ash for Potential Use as Subbase in Greenlandic Road Construction. In Proceedings of the 4th International Conference on Engineering for Waste and Biomass Valorisation, Porto, Portugal, 10–13 September 2012. [Google Scholar]
- Dabo, D.; Badreddine, R.; De Windt, L.; Drouadaine, I. Ten-year Chemical Evolution of Leachate and Municipal Solid Waste Incineration bottom Ash Used in a Test Road Site. J. Hazard. Mater. 2009, 172, 904–913. [Google Scholar] [CrossRef]
- De Windt, L.; Dabo, D.; Lidelöw, S.; Badreddine, R.; Lagerkvist, A. Mswi Bottom Ash Used as Basement at Two Pilot-scale Roads: Comparison of Leachate Chemistry and Reactive Transport Modeling. Waste Manag. 2011, 31, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Querol, X.; Josa, A.; Vazquez, E.; López-Soler, A. Comparison Between Laboratory and Field Leachability of MSWI Bottom Ash as a Road Material. Sci. Total Environ. 2008, 389, 10–19. [Google Scholar] [CrossRef]
- François, D.; Pierson, K. Environmental Assessment of a Road Site Built with MSW Residue. Sci. Total Environ. 2009, 407, 5949–5960. [Google Scholar] [CrossRef] [PubMed]
- Hjelmar, O.; Holm, J.; Crillesen, K. Utilisation of MSWI Bottom Ash as Sub-base in Road Construction: First Results from a Large-scale Test Site. J. Hazard. Mater. 2007, 139, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.A. Analysis of Laboratory and Field Leachate Test Data for Ash from Twelve Municipal Waste Combustors. In Proceedings of the USEPA and Air and Waste Manag. Association Annual International Specialty Conference on Municipal Waste Combustion, Tampa, FL, USA, 15–19 April 1991; pp. 739–758. [Google Scholar]
- Roffman, H. Effects of Municipal Waste Combustion Ash Landfill Leachate Quality Long Term Monitoring. In Proceedings of the 90 Annual Meeting and Exhibition of the Air and Waste Management Association, Toronto, ON, Canada, 8–13 June 1997. [Google Scholar]
- Cosentino, P.J.; Kalajian, E.H.; Heck, H.H.; Shieh, C.S. Developing Specification for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials. Volume 1 of 3 (Municipal Waste Combustor Ash); Florida Department of Transportation: Tallahassee, FL, USA, 1995. [Google Scholar]
- Diari Oficial de la Generalitat de Catalunya (DOGC), 2009. 5370; Decret pel qual s’estableixen els criteris i els procediments d’admisió de residus en els dipòsits controlats; Department de medi ambient I habitatge, Generalitat de Catalunya: Barcelona, Spain, 2009.
- Diari Oficial de la Generalitat de Catalunya (DOGC), 1996. 2181; Ordre de 15 de febrero de 1996, sobre valorització d’escòries; Department de medi ambient I habitatge, Generalitat de Catalunya: Barcelona, Spain, 1996.
- Rachakornkij, M. Utilization of Municipal Solid Waste Incinerator Fly Ash in Cement Mortars; New Jersey Institute of Technology: Newark, NJ, USA, 2000. [Google Scholar]
- Lucido, S.P. The Use of Municipal Waste Combustor Ash as a Partial Replacement of Aggregate in Bituminous Paving Material. In Proceedings of the 8th Annual North American Waste-to-Energy Conference, Nashville, TN, USA, 22–24 May 2000. [Google Scholar]
- Tasneem, K.M.; Eun, J.; Nam, B. Leaching behaviour of municipal solid waste incineration bottom ash mixed with Hot-Mix Asphalt and Portland cement concrete used as road construction materials. Road Mater. Pavement Des. 2017, 18, 687–712. [Google Scholar] [CrossRef]
- Li, X.D.; Poon, C.S.; Sun, H.; Lo, I.M.C.; Kirk, D.W. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. J. Hazard. Mater. 2001, 82, 215–230. [Google Scholar] [CrossRef]
- Hills, C.D.; Koe, L.; Sollars, C.J.; Perry, R. Early heat of hydration during the solidification of a metal plating sludge. Cem. Concr. Res. 1992, 22, 822–832. [Google Scholar] [CrossRef]
- Baker, P.G.; Bishop, P.L. Prediction of metal leaching rates from solidified/stabilized wastes using the shrinking unreacted core leaching procedure. J. Hazard. Mater. 1997, 52, 311–333. [Google Scholar] [CrossRef]
- Gougar, M.L.D.; Scheetz, B.E.; Roy, D.M. Ettringite and CSH Portland cement phases for waste ion immobilization: A review. Waste Manag. 1996, 16, 295–303. [Google Scholar] [CrossRef]
Compounds | Heavy Metals | |||
---|---|---|---|---|
Compound | Mass Fraction (%) | Metal | Content (mg/kg) | |
LOI (975 °C) SiO2 CaO Al2O3 Na2O K2O MgO Fe2O3 TiO2 P2O5 Mn2O3 SrO Ba Cl SO3 | 13.00 27.23 16.42 11.72 5.86 5.80 2.52 1.80 0.84 0.34 0.05 0.01 0.22 7.20 3.00 | Zn Pb Cu Mn Cr Cd Sn Sb Ni Se Te V Mo As Co Tl | 11,000 4000 670 600 450 270 180 110 50 50 46 32 25 21 21 <5 |
Location | Project Description | Performance Notes |
---|---|---|
Houston, Texas | 300 feet (91 m) of demonstration pavement in 1974. 6-inch (15 cm) base course containing 100% ash aggregate, 9% binder, and 2% lime | The test section was reported to be in excellent condition in 1978 and again in 1993. |
Philadelphia, Pennsylvania | Demonstration pavement in 1975. Ash replaced 50% of rock aggregate in a 90-foot (27 m) test section of 1.5 inch (3.8 cm) surface course. Binder content was 7.4%, and 2.5% lime was added. | The condition was reported to be acceptable in 1993. |
Lawrence County, Kentucky | A one-mile bituminous surface with 40% MIBA as aggregates was placed in October 1987 on State Route 3 in Lawrence County, Kentucky | Exhibited excellent performance with a high potential for large friction [102] |
Delaware County, Pennsylvania | A demonstration section was 60 feet (18 m) long and was placed in 1975 with 7% binder. | The condition was acceptable in 1993. |
Washington, DC | Ash replaced 70% of the natural rock aggregate in one mixture and all the aggregate in a second. 400 feet (122 m) of 4.5 inch (11.5 cm) base course contained 9% binder and 2% lime. | The condition was good in 1993. |
Lynn, Massachusetts | Ash paving demonstration on Route 129 consisted of five test sections placed during November 1980 over 1.5 miles (2.4 km) between Goodwin Circle and the beginning of St. Ann’s Cemetery. | The condition of the test section was good in 1993. |
Tampa, Florida | McKaynite, a proprietary aggregate processed from ash, was used as an aggregate in asphalt paving in February 1987. 5%, 10%, and 15% of the sand component in three 500-foot (152 m) test sections was replaced with McKaynite. Up to 10% substitution yielded the same behavior as standard design mixes used for comparison. The monitoring was stopped after 1 year. | The road was still in place in April 1997 and was described as showing some wear but acceptable. |
Approach | MSWI Ash “as Is” | Prewashing Process | Chemical or Thermal Treatments | Additives | ||||
---|---|---|---|---|---|---|---|---|
Standard Composition Requirements | Portland cement (Type I & II) | RDF BA (E.J. Duckett et al. 1980) [113] | MB BA (R. Kikuchi. 2001) [115] | MB FA (L. Wang et al. 2010) [116] | MB BA (J. Pan et al. 2008) [117] | MB BA (X.C. Qiao et al. 2008) [40] | MB BA (R. Kikuchi. 2001) [115] | MB FA (Z. Ghouleh et al. 2018) [118] |
Treatment or Additive | N/A | N/A | Prewash | Prewash with water and acid | Thermal treatment and calcium hydroxide | Sewage powder, aluminum dross, and copper slag | Waste lime, hydrated lime, and silica sand | |
Blend ratio (wt.%) | A | Replacing raw materials with ash up to 40% (optimum is 30%) | 40.6:56.6:2.8 (ash:lime:clay) | 79.48:15.88:2.58: 1.03:1.03 (ash:raw materials:SiO2:Al2O3:FeO3) | 75.9:1.3:17.1:2.2:3.5 (lime:iron slag:clay:sand:ash) | 90:10 (ash:Ca(OH)2) | 27.5:54.0:6.9:10.4:0.9:0.3 (ash:lime:clay:sewage:aluminum:copper) | 42.8:42.8:9.1:5.3 (ash:waste lime:hydrated lime:silica sand) |
Chloride (wt.%) | F | 0.01 | 0.4 | 0.0047 | 0.00037 | - | 0.3 | 4.23 |
Sulfate (wt.%) | 3.0 (max. for both) | 0.03 | 1.3 | 0.4 | 0.02 | 2.34 | 1.2 | 5.14 |
Calcium oxide, % | A | - | 60.8 | 66.33 | 65.40 | 20.20 | 61.5 | 47.59 |
Silicon dioxide, % | 20.0 (max. for II) | - | 18.1 | 22.44 | 23.03 | 36.20 | 19.0 | 19.78 |
Aluminum oxide, % | 6.0 (max. for II) | - | 10.2 | 4.98 | 5.37 | 8.48 | 10.0 | 5.33 |
Ferrite oxide, % | 6.0 (max. for II) | - | 3.5 | 3.09 | 3.87 | 6.21 | 3.0 | 1.51 |
Magnesium oxide, % | 6.0 (max. for both) | 0.64 | 1.8 | 1.34 | 2.45 | 1.58 | 2.0 | 1.83 |
Loss of ignition, % | 3.5 (max. for both) | - | - | 0.24 | - | 12.80 | - | 3.26 |
Initial & final set time (mins) | Not less than 45 for initial | 72, 198 | 40, 60 | 73, 125 | 260, 380 | 43, 62 | 30, 40 | - |
W/C ratio | A | 0.5 | 0.5 | - | 0.5 | 0.5 | - | |
UCS, MPa (1, 7, and 28 d) ASTM C109 | 10, 17 (min. for 3, 7 d) | 9.5, 29.7, 46.2 | 5, 17, 40 | 13.4, 26.97, 55.43 (1,3, 28 d) | 16.7, 26.5, 42.2 | N/A, 12.7, 14.7 | 15, 22, 35 | 5.2, 15.8, 27.0 |
Fineness (cm2/g) | 2600 min | - | - | - | 3550 | - | - | 3630 ± 330 |
Element | The Netherlands Column (L/S = 1–10) 2005 | Denmark Batch (L/S = 2) 2000 | Germany Batch (L/S = 5) 1994 | France Batch (L/S = 5) 1994 | US EPA Toxicity Criteria 1987 | US Drinking Water Standard 2009 |
---|---|---|---|---|---|---|
Cl | 440 | 300 | 125 | - | - | - |
F | 14.4 | - | - | - | - | 4 |
SO4 | 3250 | 400 | 300 | 500 | - | - |
Na | - | 150 | - | - | - | 160 |
As | 0.35 | 0.005 | - | 0.1 | 5 | 0.01 |
Ba | 7.75 | 0.4 | - | - | 100 | 2 |
Pb | 0.41 | 0.01 | 0.025 | 0.5 | 5 | 0.015 |
Cd | 0.00305 | 0.004 | 0.0025 | 0.05 | 1 | 0.005 |
Cr | 0.06 | 0.05 | 0.1 | 0.05 | 5 | 0.1 |
Cu | 0.165/1.15 a | 0.2 | 0.15 | - | - | 1 b |
Hg | 0.00375 | 0.0001 | 0.00005 | 0.01 | 0.2 | 0.002 |
Mn | - | 0.1 | - | - | - | - |
Ni | 0.175 | 0.007 | 0.02 | - | - | 0.1 |
Zn | 0.7 | 0.15 | 0.15 | - | - | 5 b |
Co | 0.115 | - | - | - | - | - |
Mo | 0.13/1.15 a | - | - | - | - | - |
Sb | 0.06/0.1 a | - | - | - | - | 0.006 |
Se | 0.0135 | - | - | - | 1 | 0.05 |
Sn | 0.115 | - | - | - | - | - |
V | 4.8 | - | - | - | - | - |
Ag | - | - | - | - | 5 | 0.1 b |
Tl | - | - | - | - | - | 0.001 |
Element | BA | APC | Combined Ash | Concrete with Combined Ash | Criteria for Utilization b | Criteria for Landfill c | ||
---|---|---|---|---|---|---|---|---|
Inert | Non-Hazardous | Hazardous | ||||||
As | 0.003 | 0.004 | 0.003 | 0.001 | 1.0 | 0.50 | 2 | 25 |
Ba | 0.504 | 43.682 | 5.302 | 15.04 | - | 20.0 | 100 | 300 |
Cd | 0.043 | 0.040 | 0.043 | 0.026 | 1.0 | 0.04 | 1 | 5 |
Cr | 0.390 | 3.643 | 0.751 | 0.050 | 5.0 | 0.50 | 10 | 70 |
Cu | 0.989 | 4.999 | 1.435 | 0.938 | 20 | 2.00 | 50 | 100 |
Hg | <0.01 | <0.01 | 0.010 | <0.010 | 0.2 | 0.01 | 0.2 | 2 |
Mo | 0.401 | 2.611 | 0.647 | 0.117 | - | 0.50 | 10 | 30 |
Ni | 0.060 | 1.290 | 0.197 | 0.170 | 5.0 | 0.40 | 10 | 40 |
Pb | 0.079 | 138.284 | 15.435 | 2.139 | 5.0 | 0.50 | 10 | 50 |
Sb | 0.460 | 0.040 | 0.413 | 0.079 | - | 0.06 | 0.7 | 5 |
Se | 0.007 | 0.092 | 0.016 | <LOD a | - | 0.10 | 0.5 | 7 |
Zn | 0.818 | 35.083 | 4.625 | 1.008 | 20.0 | 4.00 | 50 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.H.; Nam, B.H.; An, J.; Youn, H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials 2020, 13, 3143. https://doi.org/10.3390/ma13143143
Cho BH, Nam BH, An J, Youn H. Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials. 2020; 13(14):3143. https://doi.org/10.3390/ma13143143
Chicago/Turabian StyleCho, Byoung Hooi, Boo Hyun Nam, Jinwoo An, and Heejung Youn. 2020. "Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review" Materials 13, no. 14: 3143. https://doi.org/10.3390/ma13143143
APA StyleCho, B. H., Nam, B. H., An, J., & Youn, H. (2020). Municipal Solid Waste Incineration (MSWI) Ashes as Construction Materials—A Review. Materials, 13(14), 3143. https://doi.org/10.3390/ma13143143