A Technological Understanding of Biofilm Detection Techniques: A Review
Abstract
:1. Introduction
2. Theoretical Facets of Biofouling
2.1. Biofouling Phenomenon
2.2. Detection Techniques
- Physical: when the total biomass of the biofilm can be obtained from dry or wet weight measurements.
- Chemical: when it uses dyes or fluorochromes that can bind to or adsorb onto biofilm components.
- Microscopical: when an imaging modality is used to detect the formation of biofilm (i.e., whenever a microscope is used).
- Biological: when a technique uses the estimation of cell viability in measuring and detecting biofilm formation.
2.3. Materials for Bioreactors Fabrication
3. Technological Substratum of Detection Techniques
3.1. Physical
3.1.1. Cumulative Sum (CUSUM) Control Chart
3.1.2. Visible and Near-Infrared (V&NIR) Image Processing
3.1.3. Electrochemical Impedance (EIM) Spectroscopy
3.1.4. Nuclear Magnetic Resonance (NMR) Imaging
3.1.5. Ultrasonic Time-Domain Reflectometry (UTDR)
3.1.6. Dry Mass Weighing (DMW)
3.1.7. Laser-Induced Fluorescence (LIF) Spectroscopy
3.1.8. Surface-Enhanced Raman Spectroscopy (SERS)
3.2. Chemical
3.2.1. Microtiter Plate Dye Staining (MPDS)
3.2.2. Biomass Metabolic Activity
3.2.3. Total Biomass
3.2.4. Phospholipid Based Biomass Analysis (PBBA)
3.3. Microscopical
3.3.1. Light Microscopy
3.3.2. Confocal Laser Scanning Microscopy (CLSM)
3.3.3. Scanning Electron Microscopy (SEM)
3.3.4. Atomic Force Microscopy (AFM)
3.3.5. Transmission Electron Microscopy (TEM)
3.3.6. Environmental Scanning Electron Microscopy (ESEM)
3.3.7. Scanning Transmission X-Ray Microscopy (STXM)
3.4. Biological
3.4.1. Determination of Colony-Forming Units (CFU)
3.4.2. Light Microscopy
3.5. Combinations of Different Categories
3.5.1. Extracellular Polymeric Substance (EPS) Extraction
3.5.2. Anti-EPS Component Antibodies
3.5.3. Fourier Transform Infrared (FTIR) Spectroscopy
3.6. Combinations of Different Categories
3.7. Properties of Detection Techniques
4. Confluence of Material in Biofilm Formation
4.1. Construction Materials for Bioreactors and Their Effect on Biofouling
4.2. Stainless Steel as a Construction Material for Bioreactors
4.3. Glass as a Construction Material for Bioreactors
4.4. Resin as An Alternative Construction Material for Bioreactors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, X.; Xu, H.; Wu, Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterothrophic cultivation in bioreactors. Biotechnol. Bioeng. 2007, 98, 764–771. [Google Scholar] [CrossRef]
- Liu, N.; Zang, R.; Yang, S.; Li, Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Eng. Life Sci. 2014, 14, 4–15. [Google Scholar] [CrossRef]
- Barouni, E.; Petsi, T.; Kanellaki, M.; Bekatorou, A.; Koutinas, A.A. Low volume bioreactor development in dairy industry based on encapsulated rennin in tubular cellulose/starch gel composite. Food Bioprocess Technol. 2018, 11, 194–200. [Google Scholar] [CrossRef]
- Osadolor, O.; Lennartsson, P.; Taherzadeh, M. Introducing textiles as material of construction of ethanol bioreactors. Energies 2014, 7, 7555–7567. [Google Scholar] [CrossRef] [Green Version]
- Achinas, S.; Euverink, G. Development of an anaerobic digestion screening system using 3D-printed mini-bioreactors. In New Advances on Fermentation Processes; IntechOpen: London, UK, 2020. [Google Scholar]
- Vanysacker, L.; Boerjan, B.; Declerck, P.; Vankelecom, I. Biofouling ecology as a means to better understand membrane biofouling. Appl. Microbiol. Biotechnol. 2014, 98, 8047–8072. [Google Scholar] [CrossRef]
- Achinas, S.; Charalampogiannis, N.; Euverink, G. A brief recap of microbial adhesion and biofilms. Appl. Sci. 2019, 9, 2801. [Google Scholar] [CrossRef] [Green Version]
- Zaky, A.; Escobar, I.; Gruden, C. Application of atomic force microscopy for characterizing membrane biofouling in the micrometer and nanometer scales. Environ. Prog. Sustain. Energy 2013, 32, 449–457. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Garrett, T.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 2008, 18, 1049–1056. [Google Scholar] [CrossRef]
- Slullitel, P.A.; Buttaro, M.A.; Greco, G.; Oñativia, J.I.; Sánchez, M.L.; Mc Loughlin, S.; Carcía-Ávilla, C.; Comba, F.; Zanotti, G.; Piccaluga, F. No lower bacterial adhesion for ceramics compared to other biomaterials. Orthop. Traumatol. Surg. Res. 2018, 104, 439–443. [Google Scholar] [CrossRef]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turan, O.; Demirel, Y.; Day, S.; Tezdogan, T. Experimental determination of added hydrodynamic resistance caused by marine biofouling on ships. In Proceedings of the 6th European Transport Research Conference, Warsaw, Poland, 18–21 April 2016; pp. 1–10. [Google Scholar]
- Nguyen, T.; Roddick, F.; Fan, L. Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griskin, V.; Iakuskin, O.; Stepenko, N. Biofouling detection based on image processing technique. In Computer Science and Information Techniques (CSIT); IEEE: Piscataway, NJ, USA, 2017; pp. 158–161. [Google Scholar]
- Boullosa-Falces, D.; Barrena, J.L.L.; Lopez-Arraiza, A.; Menendez, J.; Solaetxe, M.A.G. Validation of CUSUM control chart for biofouling detection in heat exchangers. Appl. Therm. Eng. 2019, 152, 24–31. [Google Scholar] [CrossRef]
- Inaba, T.; Hori, T.; Aizawa, H.; Ogata, A.; Habe, H. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors. npj Biofilms Microbiomes 2017, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alav, L.; Sutton, J.; Rahman, K. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, A.L.S.; Galdino, A.C.M.; De Mello, T.P.; Ramos, L.D.S.; Branquinha, M.H.; Bolognese, A.M.; Columbano, J.; Roudbary, M.; Neto, J.C. What are the advantages of living in a community? A microbial biofilm perspective! Mem. Inst. Oswaldo Cruz 2018, 113, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Landoulsi, J.; Cooksey, K.; Dupres, V. Review—Interactions between diatoms and stainless steel: Focus on biofouling and biocorrosion. Biofouling 2011, 27, 1105–1124. [Google Scholar] [CrossRef] [Green Version]
- Klahre, J.; Flemming, H. Monitoring of biofouling in papermill process waters. Water Res. 2000, 34, 3657–3665. [Google Scholar] [CrossRef]
- Lalot, S.; Mercère, G. Detection of fouling in a heat exchanger using a recursive subspace identification algorithm. In Proceedings of the 19th International Symposium on Transport Phenomena, Rejkjavik, Iceland, 17–20 August 2008; Volume 17. [Google Scholar]
- Boullosa-Falces, D.; Barrena, J.L.L.; Lopéz-Arraiza, A.; Menendez, J.; Solaetxe, M.A.G. Monitoring of fuel oil process of marine diesel engine. Appl. Therm. Eng. 2017, 127, 517–526. [Google Scholar] [CrossRef]
- Gheorghe, C.; Deac, T.; Filip, N. Image processing techniques used in soil moisture analysis. Inmateh Agric. Eng. 2019, 58, 147–154. [Google Scholar]
- Ancuta, P.; Atanasescu, A.; Sorea, S.; Stanciu, D.; Lucaciu, I.E.; Stoica, C.; Nita-Lazar, M.; Banciu, A.R. Bacterial monitoring of drinking water sources using immunofluorescence technique, image processing software and web-based data visualisation. Control Eng. Appl. Inform. 2019, 21, 54–63. [Google Scholar]
- Fernandez, L.; Allende-Prieto, C.; Peon, J.; Recondo, C.; Rordiguez-Gonzalez, P.; Gutierrez, D.; Martinez, B.; Garcia, P.; Rodriguez, A. Preliminary assessment of visible, near-infrared, and short-wavelength–Infrared Spectroscopy with a Portable Instrument for the Detection of Staphylococcus aureus biofilms on surfaces. J. Food Prot. 2019, 82, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Shams-Nateri, A.; Piri, N.; Mokthari, J. A new approach to evaluate antibacterial activity of textile materials using image processing technique. Indian, J. Fibre Text. Res. 2018, 43, 483–487. [Google Scholar]
- Zhiqiang, S.; Kewu, H.; Zhanling, D.; Mengdan, Z.; Yongqiang, Y.; Jinming, H. Visible-light-triggered self-reporting release of Nitric Oxide (NO) for bacterial biofilm dispersal. Macromolecules 2019, 52, 7668–7677. [Google Scholar]
- Oliver, L.M.; Dunlop, P.S.M.; Byrne, J.A.; Blair, I.S.; Boyle, M.; McGuigan, K.G.; McAdams, E.T. An impedimetric sensor for monitoring growth of Staphylococcus epidermidis. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 31 August–3 September 2006; pp. 535–538. [Google Scholar]
- Zikmund, A.; Ripka, P.; Krasny, L.; Judl, T.; Jahoda, D. Biofilm detection by the impedance method. In Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; Volume 4, pp. 1432–1434. [Google Scholar]
- Bonetto, M.C.; Sacco, N.J.; Ohlsson, A.H.; Cortón, E.; Sticker, D.; Charwat, V.; Ertl, P. Rapid and label-free differentiation of bacterial strains using low frequency electrochemical impedance spectroscopy. In Proceedings of the IEEE 9th IberoAmerican Congress on Sensors, Bogota, Colombia, 15–18 October 2014; Volume 1, pp. 1–4. [Google Scholar]
- Bimakr, F.; Ginige, M.P.; Kaksonen, A.H.; Sutton, D.C.; Puzon, G.J.; Cheng, K.Y. Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems. Sens. Actuators B Chem. 2018, 227, 526–534. [Google Scholar] [CrossRef]
- Huiszoon, R.C.; Subramanian, S.; Rajasekaran, P.R.; Beardslee, L.A.; Bentley, W.E.; Ghodssi, R. Flexible Platform for in situ impedimetric detection and bioelectric effect treatment of escherichia coli biofilms. IEEE Trans. Biomed. Eng. 2019, 66, 1337–1345. [Google Scholar] [CrossRef]
- Fysun, O.; Anzmann, T.; Kleesattel, A.; Gschwind, P.; Rauschnabel, J.; Kohlus, R.; Langowski, H. Detection of P. polymyxa biofilm, dairy biofouling and CIP-cleaning agents using low-field NMR. Eur. Food Res. Technol. 2019, 245, 1719–1731. [Google Scholar] [CrossRef]
- Manz, B.; Volke, F.; Goll, D.; Horn, H. Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI). Biotechnol. Bioeng. 2003, 84, 424–432. [Google Scholar] [CrossRef]
- Burcaw, L.; Hunter, M.; Callaghan, P. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field. J. Magn. Reson. 2010, 205, 209–215. [Google Scholar] [CrossRef]
- Windt, C.; Vergeldt, F.; van As, H. Correlated displacement—T2 MRI by means of a pulsed field gradient-multi spin echo method. J. Magn. Reson. 2007, 185, 230–239. [Google Scholar] [CrossRef]
- Vogt, S.; Sanderlin, A.; Seymour, J.; Codd, S. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement relaxation correlations. Biotechnol. Bioeng. 2013, 110, 1366–1375. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Sanderson, R.; Chai, G. A focused ultrasonic sensor for in situ detection of protein fouling on tubular ultrafiltration membranes. Sens. Actuators B Chem. 2006, 114, 182–191. [Google Scholar] [CrossRef]
- Cui, L.; Yao, M.; Ren, B.; Zhang, K. Sensitive and versatile detection of the fouling process and fouling propensity of proteins on polyvinylidene fluoride membranes via surface-enhanced Raman spectroscopy. Anal. Chem. 2011, 83, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Mairal, A.; Greenberg, A.; Krantz, W. Investigation of membrane fouling and cleaning using ultra sonic time-domain reflectometry. Desalination 2000, 130, 45–60. [Google Scholar] [CrossRef]
- Kujundzic, E.; Fonseca, C.A.; Evans, E.A.; Peterson, M.; Greenberg, A.R.; Hernandez, M. Ultrasonic monitoring of early stage biofilm growth on polymeric surfaces. J. Microbiol. Methods 2007, 68, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.T.V.; Suwarno, S.R.; Chong, T.H.; Krantz, W.B.; Fane, A.G. Monitoring membrane biofouling using ultra sonic time-domain reflectometry enhanced by silica dosing. J. Membr. Sci. 2013, 428, 24–37. [Google Scholar] [CrossRef]
- Wang, J.; Ren, H.; Li, X.; Li, J.; Ding, L.; Geng, J.; Xu, K.; Huang, H.; Hu, H. In situ monitoring of wastewater biofilm formation process via ultrasonic time domain reflectometry (UTDR). Chem. Eng. J. 2018, 334, 2134–2141. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Xu, N.; Hou, Y.; Lin, J. Visualization of fouling and diffusion behaviors during hollow fibermicrofiltration of oily wastewater by ultrasonic reflectometry andwavelet analysis. J. Membr. Sci. 2009, 341, 195–202. [Google Scholar] [CrossRef]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.H.; Wilson, E. Quantitative and qualitative assessment methods for biofilm growth: A mini-review. Res. Rev. J. Eng. Technol. 2017, 6, 1–25. [Google Scholar]
- Trulear, M.; Characklis, W. Dynamics of biofilm processes. J. Water Pollut. Control Fed. 1982, 54, 1288–1301. [Google Scholar]
- Koo, H.L.; Hayacibara, M.F.; Schobel, B.D.; Cury, J.A.; Rosalen, P.L.; Park, Y.K.; Vacca-Smith, A.M.; Bowen, W.H. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J. Antimicrob. Chemother. 2003, 52, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Wallstrom, S.; Dernfalk, A.D.; Bengtsson, M.; Kroll, S.; Gubanski, S.M.; Karlsson, S. Image analysis and laser induced fluorescence combined to determine growth on silicone rubber insulators. Polym. Degradation Stab. 2005, 88, 394–400. [Google Scholar] [CrossRef]
- Bengtsson, M.; Grönlund, R.; Sjöholm, M.; Abrahamsson, C.; Dernfalk, A.D.; Wallström, S.; Larsson, A.; Weibring, P.; Karlsson, S.; Gubanski, S.M. Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators. Opt. Lasers Eng. 2005, 43, 624–632. [Google Scholar] [CrossRef]
- Vieira, S.; Utkin, A.B.; Lavrov, A.; Santos, N.M.; Vilar, R.; Marques da Silva, J.; Cartaxana, P. Effects of intertidal microphytobenthos migration on biomass determination via laser-induced fluorescence. Marine Ecol. Prog. Ser. 2011, 432, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Utkin, A.B.; Chaves, P.; Fernandes, L.; Pinto, I.V.; Revez, M.J. LIF and SFS techniques for early detection of biofilms harmful for cultural heritage. In Proceedings of the International Conference Laser Optics (ICLO), Petersburg, Russia, 4–8 June 2018; p. 275. [Google Scholar]
- Marques da Silva, J.; Utkin, A.B. Application of Laser-Induced Fluorescence in Functional Studies of Photosynthetic Biofilms. Processes 2018, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Schlücker, S. Surface-enhanced raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Chen, P.; Cui, L.; Zhang, K. Surface-enhanced Raman spectroscopy monitoring the development of dual-species biofouling on membrane surfaces. J. Membr. Sci. 2015, 473, 36–44. [Google Scholar] [CrossRef]
- Kogler, M.; Zhang, B.; Cui, L.; Shi, Y.; Yliperttula, M.; Laaksonen, T.; Viitala, T.; Zhang, K. Real-time Raman based approach for identification of biofouling. Sens. Actuators B Chem. 2016, 230, 411–421. [Google Scholar] [CrossRef]
- De Marchi, S.; Bodelón, G.; Vázquez-Iglesias, L.; Liz-Marzán, L.M.; Pérez-Juste, J.; Pastoriza-Santos, I. Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. Appl. Mater. Today 2019, 14, 207–215. [Google Scholar] [CrossRef]
- Rajamani, S.; Sandy, R.; Kota, K.; Lundh, L.; Gomba, G.; Recabo, K.; Duplantier, A.; Panchal, R.G. Robust biofilm assay for quantification and high throughput screening applications. J. Microbiol. Methods 2019, 159, 179–185. [Google Scholar] [CrossRef]
- Ojima, Y.; Nunogami, S.; Taya, M. Antibiofilm effect of warfarin on biofilm formation of Escherichia coli promoted by antimicrobial treatment. J. Glob. Antimicrob. Resist. 2016, 7, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Stepanovic, S.; Vukovic, D.; Dakic, I. A modified microtiter-plate test for quantification of staphylococal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos-Zambrano, L.; Escribano, P.; Bouza, E.; Guinea, J. Production of biofilm by Candida and non-Candida spp. isolates causing fungemia: Comparison of biomass production and metabolic activity and development of cut-off points. Int. J. Med. Microbiol. 2014, 304, 1192–1198. [Google Scholar] [CrossRef]
- Gabrielson, J.; Hart, M.; Jarelöv, A.; Kühn, I.; McKenzie, D.; Mölby, R. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbiol. Methods 2002, 50, 63–73. [Google Scholar] [CrossRef]
- Li, X.; Fan, F.; Zhang, B.; Zhang, K.; Chen, B. Biosurfactant enhanced soil bioremediation of petroleum hydrocarbons: Design of experiments (DOE) based system optimization and phospholipid fatty acid (PLFA) based microbial community analysis. Int. Biodeterior. Biodegrad. 2018, 132, 216–225. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, X.; Wang, H.; Ding, N.; Xu, J. Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. J. Soils Sediments 2010, 10, 223–230. [Google Scholar] [CrossRef]
- Huang, H.; Fan, X.; Peng, C.; Geng, J.; Ding, L.; Zhang, X.; Ren, H. Linking microbial respiratory activity with phospholipid fatty acid of biofilm from full-scale bioreactors. Bioresour. Technol. 2019, 272, 599–605. [Google Scholar] [CrossRef]
- De Carvalho, C.; Da Fonseca, M. Assessment of three-dimensional biofilm structure using an optical microscope. Biotechniques 2007, 42, 616–620. [Google Scholar] [CrossRef] [Green Version]
- Harrison-Balestra, C.; Cazzaniga, A.; Davis, S.; Mertz, P. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol. Surg. 2003, 29, 631–635. [Google Scholar]
- Dominiak, D.; Nielsen, J.; Nielsen, P. Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ. Microbiol. 2011, 13, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Neu, T.; Lawrence, J. Investigation of microbial biofilm structure by laser scanning microscopy. In Productive Biofilms; Springer: Cham, Switzerland, 2014; pp. 1–51. [Google Scholar]
- Palmer Jr, R.; Sternber, C. Modern microscopy in biofilm research: Confocal microscopy and other approaches. Curr. Opin. Biotechnol. 1999, 10, 263–268. [Google Scholar] [CrossRef]
- Stoica, I.M.; Vitzilaiou, E.; Roder, H.L.; Burmolle, M.; Thaysen, D.; Knochel, S.; Van den Berg, F. Biofouling on RO-membranes used for water recovery in the dairy industry. J. Water Process Eng. 2018, 24, 1–10. [Google Scholar] [CrossRef]
- Boguslavsky, Y.; Shemesh, M.; Friedlander, A.; Rutenberg, R.; Filossof, A.M.; Buslovich, A.; Poverenov, E. Eliminating the need for biocidal agents in anti-biofouling polymers by applying grafted nanosilica instead. ACS Omega 2018, 3, 12437–12445. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, J.; Kim, H.; Chung, K.; Yoon, H. Identification of preponderant marine bacteria and their biofouling characteristics on adsorbents of different sizes and shapes in seawater. J. Marine Sci. Technol. 2018, 26, 458–464. [Google Scholar]
- Clayborn, J.; Adams, J.; Baker, C.; Ricke, S. Assessment of Salmonella spp. attachment to reusable plastic containers based on scanning electron microscopy and BAX PCR. J. Food Res. 2015, 4, 166. [Google Scholar] [CrossRef]
- Nanakoudis, A. Blog.phenom-World. 2019. Available online: https://blog.phenom-world.com/sem-tem-difference (accessed on 2 January 2020).
- Chatterjee, S.; Biswas, N.; Datta, A.; Dey, R.; Maiti, P. Atomic force microscopy in biofilm study. Microscopy 2014, 63, 269–278. [Google Scholar] [CrossRef]
- Merino, L.; Procura, F.; Trejo, F.M.; Bueno, D.J.; Golowczyc, M.A. Biofilm formation by Salmonella sp. in de poultry industry: Detection, control and iradication strategies. Food Res. Int. 2019, 119, 530–540. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, D.F.J.A.; Fernandes, A.; Kaneno, R.; Silva, M.G.; Araujo, J.P.; Silva, N.C.C.; Rall, V.L.M. Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Pathog. Dis. 2014, 11, 478–843. [Google Scholar] [CrossRef]
- Norton, T.; Thompson, R.C.; Pope, J.; Veltkamp, C.J.; Banks, B.; Howard, C.V.; Hawkins, S.J. Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat. Microb. Ecol. 1998, 16, 199–204. [Google Scholar] [CrossRef] [Green Version]
- Doucet, F.J.; Lead, J.R.; Maguire, L.; Achterberg, E.P.; Millward, G.E. Visualisation of natural aquatic colloids and particles—A comparison of conventional high vacuum and environmental scanning electron microscopy. J. Environ. Monit. 2005, 7, 115–121. [Google Scholar] [PubMed] [Green Version]
- Ozkan, A.D.; Topal, A.E.; Dana, A.; Gruler, M.O.; Tekinay, A.B. Atomic force microscopy for the investigation of molecular and cellular behaviour. Micron 2016, 89, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Phang, I.Y.; Aldred, N.; Ling, X.Y.; Huskens, J.; Clare, A.S.; Vancso, G.J. Atomic force microscopy of the morphology and mechanical behaviour of barnacle cyprid footprint proteins at the nanoscale. J. R. Soc. Interface 2009, 7, 285–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannig, C.; Follo, M.; Hellwig, E.; Al-Ahmad, A. Visualization of adherent micro-organisms using different techniques. J. Med. Microbiol. 2010, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cao, Y.; Yu, L.; Tao, Y.; Zhou, Y.; Zhi, Q.; Lin, H. Characteristics and influencing factors of amyloid fibers in S. mutans biofilm. AMB Express 2019, 9, 31. [Google Scholar] [CrossRef] [Green Version]
- Ivnitsky, H.; Katz, I.; Minz, D.; Volvovic, G.; Shimoni, E.; Kesselman, E.; Semiat, R.; Dosoretz, C.G. Bacterial community compostion and structure of biofilms developing on nanofiltration membranes applied to wastewater treatment. Water Res. 2007, 41, 3924–3935. [Google Scholar] [CrossRef]
- Birarda, G.; Delneri, A.; Lagatolla, C.; Parisse, P.; Cescutti, P.; Vaccari, L.; Rizzo, R. Multi-technique microscopy investigation on bacterial biofilm matrices: A study on Klesbsiella pneumoniae clinical strains. Anal. Bioanal. Chem. 2019, 411, 7315–7325. [Google Scholar] [CrossRef]
- Kim, B.H.; Yang, J.; Lee, D.; Choi, B.K.; Hyeon, T.; Park, J. Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles. Adv. Mater. 2018, 30, 1703316. [Google Scholar] [CrossRef]
- Surman, S.B.; Walker, J.T.; Goddard, D.T.; Morton, L.H.G.; Keevil, C.W.; Weaver, W.; Skinner, A.; Hanson, K.; Caldwell, D.; Kurtz, J. Comparison of microscope techniques for the examination of biofilms. J. Microbiol. Methods 1996, 25, 57–70. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Araki, T.; Zhang, X.; West, M.M.; Hitchcock, A.P. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial films. Appl. Environ. Microbiol. 2003, 69, 5543–5554. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, C.; Muto, S.; Yamamoto, H. A microscopy method for scanning transmission electron microscopy imaging of the antibacterial activity of polymeric nanoparticles on a biofilm with an ionic liquid. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Fránková, M.; Poulickova, A.; Nedela, V.; Tihlarikova, E.; Sumberova, K.; Letakova, M. The low temperature method for environmental scanning electron microscopy—A new method for observation of diatom assemblages in vivo. Diatom Res. 2018, 33, 397–403. [Google Scholar] [CrossRef]
- Krausko, J.; Runstuk, J.; Nedela, V.; Klán, P.; Heger, D. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at high temperatures and pressures. Langmuir 2014, 30, 5441–5447. [Google Scholar] [CrossRef] [PubMed]
- Callow, J.A.; Osborne, M.P.; Callow, M.E.; Baker, F.; Donald, A.M. Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state. Colloids Surf. B Biointerface 2003, 27, 315–321. [Google Scholar] [CrossRef]
- Priester, J.H.; Horst, A.M.; Van de Werfhorst, L.C.; Saleta, J.L.; Mertes, L.A.K.; Holden, P.A. Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J. Microbiol. Methods 2007, 68, 577–587. [Google Scholar] [CrossRef]
- Dynes, J.J.; Tyliszczak, T.; Araki, T.; Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Hitchcock, A.P. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 2006, 40, 1556–1565. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, G.O.A.; Pennafirme, S.; Tadeu Lopes, R.; Lima, I.; Crapez, M.A.C. Imaging techniques for monitoring bacterial biofilms in environmental samples—An important tool for bioremediation studies. BAOJ Microbiol. 2017, 3, 1–15. [Google Scholar]
- Hunter, R.C.; Hitchcock, A.P.; Dynes, J.J.; Obst, M.; Beveridge, T.J. Mapping the speciation of iron in Pseudomonas aeruginosa biofilms using scanning transmission X-ray microscopy. Environ. Sci. Technol. 2008, 42, 8766–8772. [Google Scholar] [CrossRef]
- Gilbert, E.; Khlebnikov, A.; Meyer-Ilse, W.; Keasling, J. Use soft X-ray microscopy for analysis of early-stage biofilm formation. Water Sci. Technol. 1999, 39, 269–272. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, Y.; Qiu, J.; Dai, Y.; Feng, B. Imaging the Microprocesses in biofilm matrices. Trends Biotechnol. 2019, 37, 214–226. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Dynes, J.J.; Korber, D.R.; Swerhone, G.D.W.; Leppard, G.G.; Hitchcock, A.P. Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM). Chem. Geol. 2012, 329, 18–25. [Google Scholar] [CrossRef]
- Akens, M.; Chien, C.; Katchky, R.N.; Kreder, H.J.; Finkelstein, J.; Whyne, C.M. The impact of thermal cycling on Staphylococcus aureus biofilm growth on stainless steel and titanium orthopaedic plates. BMC Musculoskelet. Disord. 2018, 19, 260. [Google Scholar] [CrossRef] [PubMed]
- Van den Driessche, F.; Rigole, P.; Brackman, G.; Coenye, T. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J. Microbiol. Methods 2014, 98, 31–34. [Google Scholar] [CrossRef]
- Noble, R.; Weisberg, S. A review of technologies for rapid detection of bacteria in recreational waters. J. Water Health 2005, 3, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Johani, K.; Almatroudi, A.; Vickery, K.; Van Natta, B.; Kadin, M.E.; Brody, G.; Clemens, M.; Cheah, C.Y.; Lade, S. Bacterial biofilm infection detected in breast implant–associated anaplastic large-cell lymphoma. Plast. Reconstr. Surg. 2016, 137, 1659–1669. [Google Scholar] [CrossRef]
- Suzuki, N.; Yoshida, A.; Nakano, Y. Quantitative analysis of multi-species oral biofilms by TaqMan Real-Time PCR. Clin. Med. Res. 2005, 3, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, M.; Hu, H.; Fujie, K.; Tanaka, H.; Urano, K. Quantitative detection of Enterobacter cloacae strain HO-1 in bioreactor for chromate wastewater treatment using polymerase chain reaction (PCR). Water Res. 1998, 32, 3472–3476. [Google Scholar] [CrossRef]
- Klein, M.I.; Scott-Anne, K.M.; Gregoire, S.; Rosalen, P.L.; Koo, H. Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol. Oral Microbiol. 2012, 27, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Lin, J.; Zeng, E.; Zhuang, L. Extraction and characterization of stratified extracellular polymeric substances in Geobacter biofilms. Bioresour. Technol. 2019, 276, 119–126. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, P.; Jing, X.; Niu, X.; Ji, D.; Ashry, N.M.; Gao, C.; Huang, Q. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environ. Int. 2019, 132, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Ryser, S.; Tenorio, E.; Estelles, A.; Kauvar, L. Human antibody repertoire frequently includes antibodies to a bacterial biofilm associated protein. PLoS ONE 2019, 14, e0219256. [Google Scholar] [CrossRef]
- Carrano, G.; Paulone, S.; Lainz, L.; Sevilla, M.; Blasi, E.; Moragues, M. Anti-Candida albicans germ tube antibodies reduce in vitro growth and biofilm formation of C. albicans. Rev. Iberoam. Micol. 2019, 36, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ariafar, M.; Igci, N.; Akcelik, M.; Akcelik, N. Investigation of the effect of different environmental conditions on biofilm structure of Salmonella enterica serotype Virchow via FTIR spectroscopy. Arch. Microbiol. 2019, 201, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Serra, D.; Bosch, A.; Russo, D.M.; Rodríguez, M.E.; Zorreguieta, A.; Schmitt, J.; Naumann, D.; Yantorno, O. Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corrobaorative techniques. Anal. Bioanal. Chem. 2007, 387, 1759–1767. [Google Scholar] [CrossRef]
- Cerusico, N.; Aybar, J.P.; Lopez, S.; Molina, S.G.; Jara, R.C.; Cabral, M.E.S.; Valdez, J.C.; Altabef, A.B.; Ramos, A.N. FTIR spectroscopy of chronic venous leg ulcer exudates: An approach to spectral healing marker identification. Analyst 2018, 143, 1583–1592. [Google Scholar] [CrossRef] [Green Version]
- Singhalage, I.; Seneviratne, G.; Manawasinghe, M.H.; Manawasinghe, I. Characterization of structural properties of fungal-bacterial biofilms by Fourier Transform Infrared Spectroscopy. Ceylon J. Sci. 2018, 47, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Valladares Linares, R.; Fortunato, L.; Farhat, N.M.; Bucs, S.S.; Staal, M.; Fridjonsson, E.O.; Johns, M.L.; Vrouwenvelder, J.S.; Leiknes, T. Mini-review: Novel non-destructive in situ biofilm characterization techniques in membrane systems. Desalin. Water Treat. 2016, 57, 22894–22901. [Google Scholar] [CrossRef] [Green Version]
- Graf von der Schulenburg, D.A.; Vrouwenvelder, J.S.; Creber, S.A.; Loosdrecht, M.C.M.; Johns, M.L. Nuclear magnetic resonance microscophy studies of membrane biofouling. J. Membr. Sci. 2008, 323, 37–44. [Google Scholar] [CrossRef]
- Ferreira, A.V.; Prado, C.G.; Carvalho, R.R.; Dias, K.S.T.; Dias, A.L.T. Candidaalbicans and Non-C. albicans Candida species: Comparison of biofilm production and metabolic activity in biofilms, and putative virulence properties of isolates from hospital environments and infections. Mycopathologia 2013, 175, 265–272. [Google Scholar] [CrossRef]
- Gómez-Suárez, C.; Busscher, H.; Van der Mei, H. Analysis of bacterial detachment from substratum surfaces by the passage of air-liquid interfaces. Appl. Environ. Microbiol. 2001, 67, 2531–2537. [Google Scholar] [CrossRef] [Green Version]
- Reynoso, E.; Ferreyra, D.; Durantini, E.; Spesia, M. Photodynamic inactivation to prevent and disrupt Staphylococcus aureus biofilm under different media conditions. Photodermatol. Photoimmunol. Photomed. 2019, 35, 322–331. [Google Scholar] [CrossRef]
- Findlay, R.H.; King, G.M.; Watling, L. Efficacy of phospholipid analysis in determining microbial biomass in sediments. Appl. Environ. Microbiol. 1989, 55, 2888–2893. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Fortunato, L.; Leiknes, T. Early biofouling detection using fluorescence-based extracellular enzyme activity. Enzym. Microb. Technol. 2019, 27, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Le-Clech, P.; Marselina, Y.; Ye, Y.; Stuetz, R.M.; Chen, V. Visualization of polysaccharide fouling on microporous membrane using different characterisation techniques. J. Membr. Sci. 2007, 290, 36–45. [Google Scholar] [CrossRef]
- Keasler, V.; Bennett, B.; Keller, C.; Whalen, P.; Cairns, J.; De Paula, R.M. Expanding the microbial monitoring toolkit: Evaluation of traditional and molecular monitoring methods. Int. Biodeterior. Biodegrad. 2013, 81, 51–56. [Google Scholar] [CrossRef]
- Tollersrud, T.; Norstebo, P.E.; Engvik, J.P.; Andersen, S.R.; Reitan, L.J.; Lund, A. Antibody responses in sheep vaccinated against Staphylococcus aureus mastitis; a comparison of two experimental vaccines containing different adjuvants. Vet. Res. Commun. 2002, 26, 587–600. [Google Scholar] [CrossRef]
- Schmid, T.; Helbrecht, C.; Panne, U.; Haisch, C.; Niessner, R. Process analysis of biofilm by photoacoustic spectroscopy. Anal. Bioanal. Chem. 2003, 375, 1124–1129. [Google Scholar] [CrossRef]
- Suci, P.; Geesey, G.; Tyler, B. Integration of Raman microscopy, differential interference contrast microscopy, and attenuated total reflection fourier transform infrared spectroscopy to investigate chlorhexidine spatial and temporal distribution in Canada albicans biofilms. J. Microbiol. Methods 2001, 46, 193–208. [Google Scholar] [CrossRef]
- Fortunato, L.; Jeong, S.; Leiknes, T. Time-resolved monitoring of biofouling development on a flatsheet membrane using optical coherence tomography. Sci. Rep. 2017, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.; Simões, L.; Lima, N.; Simões, M. Adhesion of filamentous fungi isolated from drinking water under different process conditions. Water Res. 2019, 164, 114951. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, J.; Hossain, Z.Z.; Tulsiani, S.; Rashid, R.B.; Jensen, P.K.M.; Begum, A. Optimization and validation of real time PCR assays for absolute quantification of toxigenic vibrio cholerae and escherichia coli. Trop. Biomed. 2016, 33, 641–651. [Google Scholar]
- Jabbari, M.O.O.; Nair, R.; Taherzadeh, M. All-polyamide composite coated-fabric as an alternative material of construction for Textile-Bioreactors (TBRs). Energies 2017, 10, 19–28. [Google Scholar]
- Blakebrough, N. Fundamentals of fermenter design. Pure Appl. Chem. 1973, 36, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Olisti, Y. Build better industrial bioreactors. Chem. Eng. Prog. 1992, 55–58. [Google Scholar]
- Huttunen-Saarivirta, E.; Rajala, P.; Marja-aho, M.; Maukonen, J.; Sohlberg, E.; Carpen, L. Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades. Bioelectrochemistry 2018, 120, 27–42. [Google Scholar] [CrossRef]
- Parkar, S.; Flint, S.; Palmer, J.; Brooks, J. Factors influencing attachment of thermophilic bacilli to stainless steel. J. Appl. Microbiol. 2001, 90, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, L.; Bagge-Ravn, D.; Kold, J.; Gram, L. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int. Biodeterior. Biodegrad. 2003, 52, 175–185. [Google Scholar] [CrossRef]
- Jullien, C.; Bénèzech, T.; Carpentier, B.; Lebret, V.; Faille, C. Identification of surface characteristics relevant to the hygienic status of stainless steel for the food industry. J. Food Eng. 2003, 56, 77–87. [Google Scholar] [CrossRef]
- Li, N.; Mou, L.; Li, Z.; Kang, M.; Wang, X. Evolution of surface topography of 304L stainless steel irradiated by long pulse laser. AIP Adv. 2018, 8, 075211. [Google Scholar] [CrossRef]
- Uyar, B. Bioreactor design for photofermentative hydrogen production. Bioprocess Biosyst. Eng. 2016, 39, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Zeriouh, O.; Reinoso-Moreno, J.V.; López-Rosales, L.; Cerón-Garcia, M.C.; Sánchez-Mirón, A.; García-Camacho, F.; Molina-Grima, E. Biofouling in photobioreactors for marine microalgae. Crit. Rev. Biotechnol. 2017, 37, 1006–1023. [Google Scholar] [CrossRef]
- Marques, S.C.; das Gracas Oliveira Silva Rezende, J.; de Freitas Alves, L.A.; Silva, B.C.; Alves, E.; de Abreu, L.R.; Piccoli, R.H. Formation of biofilms by Staphylococcus aureus on stainless steel and glass surfaces and its resistance to some selected chemical santizers. Braz. J. Microbiol. 2007, 38, 538–543. [Google Scholar] [CrossRef] [Green Version]
- Amadu, M.; Miadonye, A. Determination of the point of zero charge PH of borosilicate glass surface using capillary imbibition method. Int. J. Chem. 2017, 9, 67–84. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Hong, D.; Lee, B.S.; Ha, E.; Park, J.H.; Choi, I.S.; Kang, S.M.; Lee, J.K. Systematic study of functionalizable, Non-biofouling agarose films with protein and cellular patterns on glass slides. Chem. Asian J. 2017, 12, 846–852. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.K.; Garg, H.; Sarepaka, R.V.; Karar, V. Experimental investigation of material removal and surface roughness during optical glass polishing. Mater. Manuf. Process. 2016, 31, 1613–1620. [Google Scholar] [CrossRef]
- Fox, B.; Subic, A. An Industry 4.0 Approach to the 3D Printing of composite materials. Engineering 2019, 5, 621–623. [Google Scholar] [CrossRef]
- Lee, A.Y.; An, J.; Chua, C.K.; Zhang, Y. Preliminary investigation of the reversible 4D Printing of a dual-layer component. Engineering 2019, 5, 1159–1170. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, L.; Ma, L.; Luo, Y.; Yang, H.; Cui, Z. 3D Bioprinting: A novel avenue for manufacturing tissues and organs. Engineering 2019, 5, 777–794. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D Printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Palmer, C. 3D printing advances on multiple fronts. Engineering 2020, 6, 590–592. [Google Scholar] [CrossRef]
- Wang, B. The future of manufacturing: A new perspective. Engineering 2018, 4, 722–728. [Google Scholar] [CrossRef]
- Shi, J.; Song, J.; Song, B.; Lu, W.F. Multi-objective optimization design through machine learning for drop-on-demand bioprinting. Engineering 2019, 5, 586–593. [Google Scholar] [CrossRef]
- El Khoury, D.; Arinero, R.; Laurentie, J.; Castellon, J. Nanoscale surface charge detection in epoxy resin materials using electrostatic force spectroscopy. AIP Adv. 2016, 6, 035318. [Google Scholar] [CrossRef]
- Ionescu, A.; Wutscher, E.; Brambilla, E.; Schneider-Feyrer, S.; Giessibl, F.J.; Hahnel, S. Influence of surface properties of resin-based composites on in vitro S treptococcus mutans biofilm development. Eur. J. Oral Sci. 2012, 120, 458–465. [Google Scholar] [CrossRef]
- Ono, M.; Nikaido, T.; Ikeda, M.; Imai, S.; Hanada, N.; Tagami, J.; Khairul, M. Surface properties of resin composite materials relative to biofilm formation. Dent. Mater. J. 2007, 26, 613–622. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, C.A.K.; Giannini, M.; André, C.B.; Sahadi, B.O.; Faraoni, J.J.; Palma-Dibb, R.G.; Soares, C.J.; Price, R.B. In vitro evaluation of surface properties and wear resistance of conventional and bulk-fill resin-based composites after brushing with a dentifrice. Oper. Dent. 2019, 44, 637–647. [Google Scholar] [CrossRef]
Categ. | Technique | Example of Application | Pros | Cons | Ref. |
---|---|---|---|---|---|
Physical | Cumulative sum control chart (CUSUM-chart) | Biofilm detection within heat exchangers |
|
| [16,22] |
Visible & Near-Infrared Spectral bands (V&NIR) | Determination of types of biological contaminants existing on the object’s surface |
|
| [15] | |
Electrochemical Impedance Method (EIM) | Biofilm detection of surgical implants in the human body |
|
| [7,9,29,30,31] | |
Nuclear Magnetic Resonance Imaging (NMRI) | Membrane systems in the water industry to produce potable water and for advanced wastewater treatment |
|
| [9,34,35,38,117,118] | |
Ultrasonic time-domain reflectometry (UTDR) | Detect biofouling on flat sheet and thin-film membranes in a canary cell configuration |
|
| [7,9,14,39,41,42,43,44] | |
Dry mass weighing (DMW) | Detection and measurements of Candida albicans on dental surfaces |
|
| [9,47,119] | |
Laser-Induced Fluorescence (LIF) spectroscopy | Biofilm detection on the surface of cultural heritage artifacts |
|
| [49,51,53] | |
Surface-enhanced Raman spectroscopy (SERS) | Detection of biofouling in drinking water membrane filtration |
|
| [40,55,56,57] | |
Chemical | Microtiter plate dye-staining (MPDS) for biomass metabolic activity | Indirect measurement of biofilm metabolic activity by chemical reduction of dye |
|
| [9,62,119,120] |
MPDS for biomass total biomass | Indirect measurement of biofilm biomass by adsorption/desorption of dye (most common dye is CV) |
|
| [9,62,119,121] | |
Phospholipid based biomass analysis | Measuring bacterial biomass in sediments |
|
| [9,122] | |
Microscopical | Light microscopy | Imaging of gram stained section of wound tissue from patients with chronic diabetic foot wounds |
|
| [7,9] |
Confocal Laser Scanning Microscopy (CLSM) | Imaging of anti-fouling properties of commercial polymers |
|
| [14,72,74,86,123] | |
Scanning electron microscopy (SEM) | Imaging of bacterial biofilms on steel surfaces |
|
| [9,73,74] | |
Atomic force microscopy (AFM) | Imaging of the morphology and mechanical behavior of barnacle cyprid footprint proteins |
|
| [14,73,83,86] | |
Transmission electron microscopy (TEM) | Map the distribution of macromolecular subcomponents of biofilm cells and matrix |
|
| [14,85,90] | |
Environmental scanning electron microscopy (ESEM) | Demonstration of the degree of exopolymer hydration in manganite-reducing biofilms |
|
| [71,124] | |
Scanning transmission soft X-ray microscopy (STXM) | Map the distribution of macromolecular subcomponents of biofilm cells and matrix |
|
| [14,90] | |
Biological | Determination of Colony Forming Units (CFU) | Study of the impact of thermal cycling on staphylococcus on orthopedic plates |
|
| [12,46,102,103] |
Quantitative polymerase chain reaction (qPCR) | Analysis of the viable bacterial population in a rodent model of dental caries |
|
| [108,125] | |
Combination | EPS extraction | Study towards soil biofilm formation and its microbial community diversity and metabolic activity |
|
| [110] |
Anti-EPS component antibodies | To compare two different vaccines against Staphylococcus Aureus mastitis for sheep |
|
| [9,126] | |
Fourier transform infrared spectroscopy (FTIR-spectroscopy) | Monitoring and detection of biofilm in continuous flow chambers |
|
| [73,114,127,128] |
Technique | Type of Detection/Monitoring | Monitoring/Detection Properties | Visualization of Result | Ref. |
---|---|---|---|---|
Cumulative sum control chart (CUSUM-chart) | In situ Real-time Non-destructive Online |
| [16,23] | |
Visible & Near-Infrared Spectral bands (V&NIR) | In situ Non-destructive |
| [15] | |
Electrochemical Impedance Method (EIM) | In situ Real-time Non-destructive Online |
| [7,32] | |
Nuclear Magnetic Resonance (NMR) Imaging | Real-time Online |
| [117,118] | |
Ultrasonic time-domain reflectometry (UTDR) | In situ Real-time Non-destructive |
| [39,42,44,129] | |
Dry mass weighing | - |
| The results gained by weighing and comparing two samples; one clean and the other contaminated by biofouling. The visualization can be in table or graph form or a weight | [46] |
Laser-Induced Fluorescence (LIF) spectroscopy | In situ Non-destructive |
| [49,51,53,130] | |
Surface-enhanced Raman scattering (SERS) spectroscopy | In situ Real-time Non-destructive Online |
| [55,56] | |
Microtiter plate dye-staining (MPDS) for biomass metabolic activity | In situ (if the biofilm is formed on a microtiter plate) |
| [62] | |
MPDS for biomass total biomass | In situ (if the biofilm is formed on a microtiter plate) |
| The result gained by MPDS for total biomass is comparable to the result gained by MPDS for biomass metabolic activity (i.e., a graph that shows the different percentages of biomass per microorganism) | [62] |
Phospholipid based biomass analysis | In situ |
| [9,122] | |
Light microscopy | In situ Non-destructive |
| [9] | |
Confocal Laser Scanning Microscopy (CLSM) | In situ Real-time Non-destructive |
| [70,71,78,90] | |
Scanning electron microscopy (SEM) | - |
| [75,78,79,125] | |
Atomic force microscopy (AFM) | In situ Non-destructive (not the case when measuring surface thickness) |
| [8,78,87] | |
Transmission electron microscopy (TEM) | - |
| [90] | |
Environmental scanning electron microscopy (ESEM) | In situ |
| [92,124] | |
Scanning transmission X-ray microscopy (STXM) | In situ Non-destructive |
| [90,96] | |
Determination of Colony Forming Units (CFU) | - |
| [103] | |
Quantitative polymerase chain reaction (qPCR) | Real-time |
| [104,108,131] | |
EPS extraction | In situ (possibly) |
| The result will be in the form of an image, however, the type of image depends on the microscopy method applied | [9] |
Anti-EPS component antibodies | In situ |
| The result will be in the form of an image, however, the type of image depends on the microscopy method applied | [9] |
Fourier transform infrared spectroscopy (FTIR-spectroscopy) | In situ Real-time Non-destructive Online |
| [113,114] |
Microorganism | Surface | Feedwater |
---|---|---|
Species | Surface charge | Temperature |
Composition of mixed population | Hydrophobicity | pH |
Population density | Surface roughness | Dissolved organic matter |
Growth phase | Surface topographical configuration (STC) | Dissolved inorganics |
Nutrient status | - | Suspended matter |
Hydrophobicity | - | Viscosity |
Charges | - | Shear forces |
Physiological response | - | Boundary layer |
- | - | Flux |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achinas, S.; Yska, S.K.; Charalampogiannis, N.; Krooneman, J.; Euverink, G.J.W. A Technological Understanding of Biofilm Detection Techniques: A Review. Materials 2020, 13, 3147. https://doi.org/10.3390/ma13143147
Achinas S, Yska SK, Charalampogiannis N, Krooneman J, Euverink GJW. A Technological Understanding of Biofilm Detection Techniques: A Review. Materials. 2020; 13(14):3147. https://doi.org/10.3390/ma13143147
Chicago/Turabian StyleAchinas, Spyridon, Stijn Keimpe Yska, Nikolaos Charalampogiannis, Janneke Krooneman, and Gerrit Jan Willem Euverink. 2020. "A Technological Understanding of Biofilm Detection Techniques: A Review" Materials 13, no. 14: 3147. https://doi.org/10.3390/ma13143147
APA StyleAchinas, S., Yska, S. K., Charalampogiannis, N., Krooneman, J., & Euverink, G. J. W. (2020). A Technological Understanding of Biofilm Detection Techniques: A Review. Materials, 13(14), 3147. https://doi.org/10.3390/ma13143147