Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Corrosion Data and Exposure Test Environments
2.2. Random Forest Algorithm
2.3. Model Setting and Performance Evaluation
3. Results and Discussion
3.1. Random Forest Prediction Model
3.2. Determining the Factors of Environmental Corrosivity
3.3. Determining the Factors of Corrosion Rate in Different Exposure Test Sites
3.4. Generalization Ability of the Corrosion Rate Prediction Model
3.5. Factors Affecting the Regression Analysis Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouchar, M.; Dillmann, P.; Neff, D. New insights in the long-term atmospheric corrosion mechanisms of low alloy steel reinforcements of cultural heritage buildings. Materials 2017, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Díaz, I.; Cano, H.; Lopesino, P.; de la Fuente, D.; Chico, B.; Jiménez, J.A.; Medina, S.F.; Morcillo, M. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments. Corros. Sci. 2018, 141, 146–157. [Google Scholar] [CrossRef]
- Diaz, I.; Cano, H.; Crespo, D.; Chico, B.; de la Fuente, D.; Morcillo, M. Atmospheric corrosion of ASTM A-242 and ASTM A-588 weathering steels in different types of atmosphere. Corros. Eng. Sci. Technol. 2018, 53, 449–459. [Google Scholar] [CrossRef]
- Cano, H.; Diaz, I.; de la Fuente, D.; Chico, B.; Morcillo, M. Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities. Mater. Corros. 2018, 69, 8–19. [Google Scholar] [CrossRef]
- Wang, Z.F.; Liu, J.R.; Wu, L.X.; Han, R.D.; Sun, Y.Q. Study of the corrosion behavior of weathering steels in atmospheric environments. Corros. Sci. 2013, 67, 1–10. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kalliampakos, G. Mapping atmospheric corrosion on materials of archaeological importance in Athens. Water Air Soil Pollut. 2012, 223, 2169–2180. [Google Scholar] [CrossRef]
- Castaño, J.G.; Botero, C.A.; Restrepo, A.H.; Agudelo, E.A.; Correa, E.; Echeverría, F. Atmospheric corrosion of carbon steel in Colombia. Corros. Sci. 2010, 52, 216–223. [Google Scholar] [CrossRef]
- Jamil, I.; Bano, H.; Castano, J.G.; Mahmood, A. Characterization of atmospheric corrosion near the coastal areas of Arabian sea. Mater. Corros. 2018, 69, 898–907. [Google Scholar] [CrossRef]
- Nishimura, T. Rust formation mechanism on low alloy steels after exposure test in high Cl− and high SOx environment. Materials 2017, 10, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Zhao, Y.; Ma, X.; Zhou, K.; Chen, Y. Influence of environmental factors on atmospheric corrosion in dynamic environment. Corros. Sci. 2018, 137, 163–175. [Google Scholar] [CrossRef]
- Ma, Y.T.; Li, Y.; Wang, F.H. Weatherability of 09CuPCrNi steel in a tropical marine environment. Corros. Sci. 2009, 51, 1725–1732. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, T.; He, Y.; Du, X.; Ma, B.; Zhang, T. Long-term atmospheric pre-corrosion fatigue properties of epoxy primer-coated 7075-T6 aluminum alloy structures. Int. J. Fatigue 2019, 129, 105225. [Google Scholar] [CrossRef]
- Chico, B.; de la Fuente, D.; Diaz, I.; Simancas, J.; Morcillo, M. Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT Databases. Materials 2017, 10, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Han, E.; Ke, W. Introduction to atmospheric corrosion research in China. Sci. Technol. Adv. Mater. 2007, 8, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Soares, C.G.; Garbatov, Y.; Zayed, A.; Wang, G. Influence of environmental factors on corrosion of ship structures in marine atmosphere. Corros. Sci. 2009, 51, 2014–2026. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kalliampakos, G. Mapping atmosphetic corrosion on modern materials in the greater Athens area. Water Air Soil Pollut. 2013, 224, 1463. [Google Scholar] [CrossRef]
- Panchenko, Y.M.; Marshakov, A.I.; Igonin, T.N.; Kovtanyuk, V.V.; Nikolaeva, L.A. Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corros. Sci. 2014, 88, 306–316. [Google Scholar] [CrossRef]
- Morcillo, M.; Chico, B.; Díaz, I.; Cano, H.; de la Fuente, D. Atmospheric corrosion data of weathering steels. A review. Corros. Sci. 2013, 77, 6–24. [Google Scholar] [CrossRef] [Green Version]
- Panchenko, Y.M.; Marshakov, A.I. Prediction of first-year corrosion losses of carbon steel and zinc in continental regions. Materials 2017, 10, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morcillo, M.; Díaz, I.; Chico, B.; Cano, H.; de la Fuente, D. Weathering steels: From empirical development to scientific design. A review. Corros. Sci. 2014, 83, 6–31. [Google Scholar] [CrossRef] [Green Version]
- Knotkova, D.; Kreislova, K.; Dean, S.W. ISOCORRAG. International Atmospheric Exposure Program: Summary of Results; ASTM International (US): West Conshohocken, PA, USA, 2010. [Google Scholar]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, Y.; Briffod, F.; Shiraiwa, T.; Enoki, M. Prediction of cyclic stress-strain property of steels by crystal plasticity simulations and machine learning. Materials 2019, 12, 3668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Liu, Y.; Zhang, T.; Geng, S.; Wang, F. Modeling the corrosion behavior of Ni-Cr-Mo-V high strength steel in the simulated deep sea environments using design of experiment and artificial neural network. J. Mater. Sci. Technol. 2019, 35, 168–175. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, X.; Ji, L.; Hu, H.; Li, Q. Quantitative structure–activity relationship model for amino acids as corrosion inhibitors based on the support vector machine and molecular design. Corros. Sci. 2014, 83, 261–271. [Google Scholar] [CrossRef]
- Wen, Y.F.; Cai, C.Z.; Liu, X.H.; Pei, J.F.; Zhu, X.J.; Xiao, T.T. Corrosion rate prediction of 3C steel under different seawater environment by using support vector regression. Corros. Sci. 2009, 51, 349–355. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ngo, N.-T.; Chong, W.K. The use of artificial intelligence combiners for modeling steel pitting risk and corrosion rate. Eng. Appl. Artif. Intell. 2017, 65, 471–483. [Google Scholar] [CrossRef]
- Li, J.; Kong, W.K.; Shi, J.B.; Wang, K.; Wang, W.K.; Zhao, W.P.; Zeng, Z.M. Determination of corrosion types from electrochemical noise by artificial neural networks. Int. J. Electrochem. Sci. 2013, 8, 2365–2377. [Google Scholar]
- Fang, S.F.; Wang, M.P.; Qi, W.H.; Zheng, F. Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials. Comput. Mater. Sci. 2008, 44, 647–655. [Google Scholar] [CrossRef]
- Vega García, M.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Gong, X.Y.; Dong, C.F.; Xu, J.J.; Wang, L.; Li, X.G. Machine learning assistance for electrochemical curve simulation of corrosion and its application. Mater. Corros. 2020, 71, 474–484. [Google Scholar] [CrossRef]
- MatNavi. Available online: https://smds.nims.go.jp/corrosion/ (accessed on 30 June 2020).
- Japanese Industrial Standards Committee. JIS Z 2381, General Requirements for Atmospheric Exposure Test; Japanese Standard Association: Tokyo, Japan, 2001. [Google Scholar]
- Couronne, R.; Probst, P.; Boulesteix, A.L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 270. [Google Scholar] [CrossRef] [PubMed]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anysz, H.; Brzozowski, L.; Kretowicz, W.; Narloch, P. Feature importance of stabilised rammed earth components affecting the compressive strength calculated with explainable artificial intelligence tools. Materials 2020, 13, 2317. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, Y.M.; Marshakov, A.I.; Bardin, I.V.; Shklyaev, A.V. Use of sattistical analysis methods for estimating the reliability of first-year carbon steel and zinc corrosion loss predictions calculated using dose-response functions. Prot. Met. Phys. Chem. 2019, 55, 753–760. [Google Scholar] [CrossRef]
- Lan, T.T.N.; Nishimura, R.; Tsujino, Y.; Satoh, Y.; Thi Phuong Thoa, N.; Yokoi, M.; Maeda, Y. The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure. Corros. Sci. 2005, 47, 1023–1038. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Morcillo, M.; Chico, B.; Mariaca, L.; Otero, E. Salinity in marine atmospheric corrosion: Its dependence on the wind regime existing in the site. Corros. Sci. 2000, 42, 91–104. [Google Scholar] [CrossRef]
Steel | C | Si | Mn | P | S | Cu | Cr | Ni |
---|---|---|---|---|---|---|---|---|
Fe-1Ni | 0.0010 | 0.0030 | 0.0100 | 0.0003 | 0.0001 | 0.0090 | 0.0050 | 0.9800 |
Fe-3Ni | 0.0010 | 0.0030 | 0.0100 | 0.0005 | 0.0002 | 0.0090 | 0.0050 | 3.0200 |
Fe-5Ni | 0.0010 | 0.0030 | 0.1100 | 0.0006 | 0.0003 | 0.0090 | 0.0050 | 5.0100 |
Fe-1Cr | 0.0050 | 0.0030 | 0.0700 | 0.0010 | 0.0002 | 0.0090 | 1.0100 | 0.0030 |
Fe-3Cr | 0.0060 | 0.0030 | 0.0500 | 0.0007 | 0.0001 | 0.0090 | 3.0500 | 0.0030 |
Fe-5Cr | 0.0030 | 0.0030 | 0.1100 | 0.0003 | 0.0010 | 0.0090 | 5.0300 | 0.0030 |
Fe-0.4Cu | 0.0010 | 0.0030 | 0.0030 | 0.0006 | 0.0007 | 0.4300 | 0.0050 | 0.0030 |
Fe-1Cu | 0.0011 | 0.0030 | 0.0030 | 0.0002 | 0.0001 | 1.0000 | 0.0050 | 0.0030 |
Fe-2Cu | 0.0011 | 0.0030 | 0.0030 | 0.0002 | 0.0001 | 1.9800 | 0.0050 | 0.0030 |
Fe-3Cu | 0.0013 | 0.0030 | 0.0030 | 0.0002 | 0.0001 | 2.9700 | 0.0050 | 0.0030 |
SM490A | 0.1400 | 0.2500 | 1.3500 | 0.0120 | 0.0030 | 0.0090 | 0.0400 | 0.0030 |
SMA490 | 0.1300 | 0.2600 | 1.0100 | 0.0110 | 0.0050 | 0.3200 | 0.4800 | 0.1000 |
SPA-H | 0.0900 | 0.4300 | 0.3800 | 0.1020 | 0.0050 | 0.3000 | 0.6700 | 0.1800 |
Environmental Parameter | Exposure Test Site | Description | ||
---|---|---|---|---|
Tsukuba | Choshi | Miyakojima | ||
T | 14.5–15.5 | 14.7–15.3 | 23.9–24.0 | °C; mean air temperature |
RH | 74.6–77.5 | 77.6–79.0 | 78.5–79.0 | %; mean relative humidity |
TOW | 4088–4670 | 4629–4908 | 5113–5249 | h; time of wetness |
Precipitation | 1103–1344 | 1511–1791 | 1899–2314 | mm; precipitation |
Wind | 1.5–2.5 | 3.0–3.5 | 4.2–4.7 | m/s; mean velocity of wind |
Solar | 4183–6274 | 4193–4901 | 5229–5260 | MJ/m2; solar radiation |
Cl‒ | 2.8–3.3 | 32.0–32.3 | 45.8–49.2 | mg NaCl/m2·d; chloride deposition rate |
SO2 | 3.7–5.3 | 4.9–5.1 | 2.1–2.4 | mg SO2/m2·d; SO2 deposition rate |
Samples | R2 | MAE (μm/a) | ||
---|---|---|---|---|
Training Set | Test Set | Training Set | Test Set | |
Open environ. | 0.95 | 0.89 | 3.3 | 4.6 |
Shelt. environ. | 0.97 | 0.86 | 4.3 | 10.0 |
Environment & Algorithm | R2 | MAE (μm/a) | |||||
---|---|---|---|---|---|---|---|
Tsukuba + Miyakojima | Choshi Evaluation Set | Tsukuba + Miyakojima | Choshi Evaluation Set | ||||
Training Set | Test Set | Training Set | Test Set | ||||
Open environ. | RF | 0.96 | 0.70 | 0.50 | 3.1 | 7.6 | 8.0 |
SVR | 0.77 | 0.74 | 0.39 | 8.8 | 10.9 | 8.6 | |
ANN | 0.81 | 0.68 | 0.31 | 8.4 | 8.7 | 8.9 | |
Sheltered environ. | RF | 0.97 | 0.92 | −1.45 | 4.6 | 6.1 | 26.2 |
SVR | 0.90 | 0.78 | 0.03 | 12.9 | 17.3 | 17.4 | |
ANN | 0.90 | 0.79 | −1.77 | 7.7 | 12.0 | 31.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Diao, Y.; Gao, K. Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models. Materials 2020, 13, 3266. https://doi.org/10.3390/ma13153266
Yan L, Diao Y, Gao K. Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models. Materials. 2020; 13(15):3266. https://doi.org/10.3390/ma13153266
Chicago/Turabian StyleYan, Luchun, Yupeng Diao, and Kewei Gao. 2020. "Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models" Materials 13, no. 15: 3266. https://doi.org/10.3390/ma13153266
APA StyleYan, L., Diao, Y., & Gao, K. (2020). Analysis of Environmental Factors Affecting the Atmospheric Corrosion Rate of Low-Alloy Steel Using Random Forest-Based Models. Materials, 13(15), 3266. https://doi.org/10.3390/ma13153266