Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of Samples
2.2. Material Characterization
2.3. Tribological Characterization
3. Results and Discussion
3.1. Morphological and Microstructural Characterization
3.2. Friction Performance
3.3. Wear Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geetha, M.; Singh, A.; Asokamani, R.; Gogia, A. Ti based biomaterials, the ultimate choice for orthopaedic implants — A review. Prog. Mater. Sci. 2009, 54, 397–425. [Google Scholar] [CrossRef]
- Aguilar, C.; Guerra, C.; Lascano, S.; Guzmán, D.; Rojas, P.; Thirumurugan, M.; Bejar, L.; Medina, A. Synthesis and characterization of Ti–Ta–Nb–Mn foams. Mater. Sci. Eng. C 2015, 58, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Matassi, F.; Botti, A.; Sirleo, L.; Carulli, C.; Innocenti, M. Porous metal for orthopedics implants. Clin. Cases Miner. Bone Metab. 2013, 10, 111–115. [Google Scholar] [PubMed]
- Guerra, C.; Sancy, M.; Walczak, M.; Martínez, C.; Ringuedé, A.; Cassir, M.; Han, J.; Ogle, K.; De Melo, H.G.; Salinas, V.; et al. Effect of added porosity on a novel porous Ti-Nb-Ta-Fe-Mn alloy exposed to simulated body fluid. Mater. Sci. Eng. C 2020, 111. [Google Scholar] [CrossRef] [PubMed]
- Munagala, V.N.V.; Bessette, S.; Gauvin, R.; Chromik, R.R. Sliding wear of cold sprayed Ti6Al4V coatings: Effect of porosity and normal load. Wear 2020, 450–451. [Google Scholar] [CrossRef]
- Dubrujeaud, B.; Vardavoulias, M.; Jeandin, M. The role of porosity in the dry sliding wear of a sintered ferrous alloy. Wear 1994, 174, 155–161. [Google Scholar] [CrossRef]
- Xie, F.; He, X.; Yu, J.; Wu, M.; He, X.; Qu, X. Fabrication and characterization of porous Ti–4Mo alloy for biomedical applications. J. Porous Mater. 2016, 1–8. [Google Scholar] [CrossRef]
- Hussein, M.; Mohammed, A.S.; Al-Aqeeli, N. Wear Characteristics of Metallic Biomaterials: A Review. Materials 2015, 8, 2749–2768. [Google Scholar] [CrossRef]
- Revankar, G.D.; Shetty, R.; Rao, S.S.; Gaitonde, V.N. Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process. J. Mater. Res. Technol. 2017, 6, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-Q.; Ji, F.; Wang, M.; Zhu, T. Study on the Tribological Properties of Porous Titanium Sliding against Tungsten Carbide YG6. Metals 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Shil’Ko, S.; Gubicza, J.; Choe, H. Study of the compression and wear-resistance properties of freeze-cast Ti and Ti‒5W alloy foams for biomedical applications. J. Mech. Behav. Biomed. Mater. 2017, 72, 66–73. [Google Scholar] [CrossRef]
- Guo, C.; Chen, J.; Zhou, J.; Zhao, J.; Wang, L.; Yu, Y.; Zhou, H. Microstructure and tribological properties of TiAg intermetallic compound coating. Appl. Surf. Sci. 2011, 257, 10692–10698. [Google Scholar] [CrossRef]
- Ebhota, W.S.; Jen, T.-C. Intermetallics Formation and Their Effect on Mechanical Properties of Al-Si-X Alloys. In Intermetallic Compounds - Formation and Applications; IntechOpen: London, UK, 2018; p. 29. [Google Scholar]
- La Grange, D.D.; Goebbels, N.; Santana, A.; Heuberger, R.; Imwinkelried, T.; Eschbach, L.; Karimi, A. Effect of niobium onto the tribological behavior of cathodic arc deposited Nb–Ti–N coatings. Wear 2016, 368–369, 60–69. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R: Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cao, C.; Yin, S. Solid-state cold spraying of Ti and its alloys: A literature review. Prog. Mater. Sci. 2019, 100633. [Google Scholar] [CrossRef]
- Ceschini, L.; Lanzoni, E.; Martini, C.; Prandstraller, D.; Sambogna, G. Comparison of dry sliding friction and wear of Ti6Al4V alloy treated by plasma electrolytic oxidation and PVD coating. Wear 2008, 264, 86–95. [Google Scholar] [CrossRef]
- Kuptsov, K.; Sheveyko, A.; Manakova, O.; Sidorenko, D.; Shtansky, D. Comparative investigation of single-layer and multilayer Nb-doped TiC coatings deposited by pulsed vacuum deposition techniques. Surf. Coatings Technol. 2020, 385, 125422. [Google Scholar] [CrossRef]
- Booser, R.E. Tribology Data Handbook: An Excellent Friction, Lubrication, and Wear Resource; CRC Press: Florida, USA, 1997; p. 1120. [Google Scholar]
- Pawlus, P.; Reizer, R.; Wieczorowski, M.; Krolczyk, G. Material ratio curve as information on the state of surface topography—A review. Precis. Eng. 2020, 65, 240–258. [Google Scholar] [CrossRef]
- Czyrska-Filemonowicz, A.; Buffat, P.; Lucki, M.; Moskalewicz, T.; Rakowski, W.; Wierzchoń, T. Transmission electron microscopy and atomic force microscopy characterisation of titanium-base alloys nitrided under glow discharge. Acta Mater. 2005, 53, 4367–4377. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Z.; Wang, B.; Song, Q.; Wan, Y.; Chen, L. Surface Characterization and Tribological Performance of Anodizing Micro-Textured Aluminum-Silicon Alloys. Mater. 2019, 12, 1862. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, D.Y.; Cook, B. Is porosity always detrimental to the wear resistance of materials?—A computational study on the effect of porosity on erosive wear of TiC/Cu composites. Wear 2009, 267, 1153–1159. [Google Scholar] [CrossRef]
- Ureña, J.M.; Tabares, E.; Tsipas, S.A.; Jiménez-Morales, A.; Gordo, E. Dry sliding wear behaviour of β-type Ti-Nb and Ti-Mo surfaces designed by diffusion treatments for biomedical applications. J. Mech. Behav. Biomed. Mater. 2019, 91, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Braic, L.; Padmanabhan, S.C.; Morris, M.A.; Titorencu, I.; Pruna, V.; Parau, A.; Romanchikova, N.; Petrik, L.F.; Vladescu, A. Characterization of electron beam deposited Nb2O5 coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020, 103, 103582. [Google Scholar] [CrossRef] [PubMed]
- Haftlang, F.; Zarei-Hanzaki, A.; Abedi, H.R. In-situ frictional grain refinement of Ti–29Nb–14Ta–4.5Zr bio-alloy during high-speed sliding wear. Mater. Lett. 2020, 261, 127083. [Google Scholar] [CrossRef]
ID/% | E/GPa | Max. Depth/µm | Cross-Section Areas/µm2 | Sk/µm | Sdc/µm | Wear Rate/m3·N−1·m−1 |
---|---|---|---|---|---|---|
bulk | 48.8 ± 19.2 | 6.3 ± 1.2 | 856.6 ± 204.8 | 0.07 | 0.08 | 6.0 ± 2.0·10−7 |
30 | 8.8 ± 2.1 | 5.4 ± 2.6 | 1111.0 ± 130.1 | 0.50 | 0.81 | 5.5 ± 4.2·10−7 |
60 | 5.7* | 0.6 ± 0.3 | 28.8 ± 0.2 | 0.07 | 0.16 | 2.7 ± 1.2·10−7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, C.; Walczak, M.; Sancy, M.; Martínez, C.; Aguilar, C.; Kalbarczyk, M. Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition. Materials 2020, 13, 3284. https://doi.org/10.3390/ma13153284
Guerra C, Walczak M, Sancy M, Martínez C, Aguilar C, Kalbarczyk M. Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition. Materials. 2020; 13(15):3284. https://doi.org/10.3390/ma13153284
Chicago/Turabian StyleGuerra, Carolina, Magdalena Walczak, Mamié Sancy, Carola Martínez, Claudio Aguilar, and Marek Kalbarczyk. 2020. "Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition" Materials 13, no. 15: 3284. https://doi.org/10.3390/ma13153284
APA StyleGuerra, C., Walczak, M., Sancy, M., Martínez, C., Aguilar, C., & Kalbarczyk, M. (2020). Tribological Performance of Porous Ti–Nb–Ta–Fe–Mn Alloy in Dry Condition. Materials, 13(15), 3284. https://doi.org/10.3390/ma13153284