Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning
Abstract
:1. Introduction
2. Method
2.1. Data Set
2.1.1. Data Set Creation
2.1.2. Data Set Overview
2.1.3. Data Set i: Extrusions and Cracks in Ferritic Steel
2.1.4. Data Set ii: Extrusions in Copper
2.1.5. Data Set iii: Extrusions in Martensitic Steel
2.2. Semantic Segmentation
2.2.1. Data Variance and Augmentation
2.2.2. Architecture
2.3. Slip Trace Detection
- CSO: Clustering of Scharr gradient based edge orientations.
- CHL: Clustering Hough lines from edges.
- ICEO: Iterative clustering of edge orientations.
3. Results and Discussion
3.1. Semantic Segmentation
3.1.1. Source Domain Performance and Domain Generalization
3.1.2. Multi-Domain Training
3.1.3. Model Evaluation on the Ferrite Domain
3.2. Slip Trace Detection
4. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
bcc | body centered cubic |
CHL | clustering Hough lines from edges |
CPFE | crystal plasticity finite elements |
CPFFT | crystal plasticity fast Fourier transform |
CSO | clustering of Scharr gradient based edge orientations |
DL | deep learning |
EBSD | electron backscatter diffraction |
fcc | face centered cubic |
FIP | fatigue indicator parameter |
GPU | graphic processing unit |
HCF | high-cycle fatigue |
HR-DIC | high resolution digital image correlation |
HT | Hough transform |
ICEO | iterative clustering of edge orientations |
mIoU | mean intersection over union |
ML | machine learning |
OHFC | oxygen-free high conductivity |
OP-S | collodial silica polishing client |
SC | sampling correction |
SE2 | secondary electron |
SEM | scanning electron microscopy |
STO | slip trace orientation |
SWC | sample weight correction |
SWCS | sample weight and sampling correction |
VHCF | very high-cycle fatigue |
References
- National Science and Technology Council (US). Materials Genome Initiative for Global Competitiveness; Executive Office of the President, National Science and Technology Council: Washington, DC, USA, 2011. [Google Scholar]
- Innovations-Plattform Material Digital. Available online: https://www.materialdigital.de/ (accessed on 9 May 2020).
- Nationale Forschungsdateninfrastruktur für die Materialwissenschaften und Werkstofftechnik. Available online: https://nfdi4mse.de/ (accessed on 8 May 2020).
- Schäfer, B.J.; Sonnweber-Ribic, P.; ul Hassan, H.; Hartmaier, A. Micromechanical modelling of the influence of strain ratio on fatigue crack initiation in a martensitic steel-a comparison of different fatigue indicator parameters. Materials 2019, 12, 2852. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Laird, C. Crack nucleation and stage I propagation in high strain fatigue—I. Microscopic and interferometric observations. Acta Metall. 1978, 26, 777–787. [Google Scholar] [CrossRef]
- Cerrone, A.; Stein, C.; Pokharel, R.; Hefferan, C.; Lind, J.; Tucker, H.; Suter, R.; Rollett, A.; Ingraffea, A. Implementation and verification of a microstructure-based capability for modeling microcrack nucleation in LSHR at room temperature. Model. Simul. Mater. Sci. Eng. 2015, 23, 035006. [Google Scholar] [CrossRef]
- Guan, Y.; Chen, B.; Zou, J.; Britton, T.B.; Jiang, J.; Dunne, F.P. Crystal plasticity modelling and HR-DIC measurement of slip activation and strain localization in single and oligo-crystal Ni alloys under fatigue. Int. J. Plast. 2017, 88, 70–88. [Google Scholar] [CrossRef] [Green Version]
- Eastman, D. Microscale Testing and Characterization Techniques for Benchmarking Crystal Plasticity Models. Ph.D. Thesis, Johns Hopkins University, Baltimore, MD, USA, 2018. [Google Scholar]
- Zhang, Z.; Lunt, D.; Abdolvand, H.; Wilkinson, A.J.; Preuss, M.; Dunne, F.P. Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension. Int. J. Plast. 2018, 108, 88–106. [Google Scholar] [CrossRef] [Green Version]
- Everingham, M.; Eslami, S.M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2014, 111, 98–136. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar] [CrossRef] [Green Version]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3213–3223. [Google Scholar] [CrossRef] [Green Version]
- Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3234–3243. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Azimi, S.M.; Britz, D.; Engstler, M.; Fritz, M.; Mücklich, F. Advanced steel microstructural classification by deep learning methods. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef]
- Masci, J.; Meier, U.; Ciresan, D.; Schmidhuber, J.; Fricout, G. Steel defect classification with Max-Pooling Convolutional Neural Networks. In Proceedings of the International Joint Conference on Neural Networks, Brisbane, QLD, Australia, 10–15 June 2012; pp. 10–15. [Google Scholar] [CrossRef] [Green Version]
- Straub, T.; Berwind, M.F.; Kennerknecht, T.; Lapusta, Y.; Eberl, C. Small-Scale Multiaxial Setup for Damage Detection Into the Very High Cycle Fatigue Regime. Exp. Mech. 2015, 55, 1285–1299. [Google Scholar] [CrossRef] [Green Version]
- Man, J.; Obrtlík, K.; Polák, J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 2009, 89, 1295–1336. [Google Scholar] [CrossRef]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Straub, T. Experimental Investigation of Crack Initiation in Face-Centered Cubic Materials in the High and Very High Cycle Fatigue Regime; KIT Scientific Publishing: Karlsruhe, Germany, 2016; Volume 55, p. 87. [Google Scholar]
- Polatidis, E.; Hsu, W.N.; Šmíd, M.; Van Swygenhoven, H. A High Resolution Digital Image Correlation Study under Multiaxial Loading. Exp. Mech. 2019, 59, 309–317. [Google Scholar] [CrossRef] [Green Version]
- Boyce, B.L.; Michael, J.R.; Kotula, P.G. Fatigue of metallic microdevices and the role of fatigue-induced surface oxides. Acta Mater. 2004, 52, 1609–1619. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6. [Google Scholar] [CrossRef]
- Canny, J. A Computational Approach to Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 679–698. [Google Scholar] [CrossRef]
- Lassen, K. Automatic high-precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction patterns. J. Microsc. 1998, 190, 375–391. [Google Scholar] [CrossRef]
- Wu, R.; Yan, S.; Shan, Y.; Dang, Q.; Sun, G. Deep Image: Scaling up Image Recognition. arXiv 2015, arXiv:1501.02876. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks? Adv. Neural Inf. Process. Syst. 2014, 4, 3320–3328. [Google Scholar]
- Vluymans, S. Learning from imbalanced data. Stud. Comput. Intell. 2019, 807, 81–110. [Google Scholar] [CrossRef]
- Ganin, Y.; Lempitsky, V. Unsupervised domain adaptation by backpropagation. 32nd Int. Conf. Mach. Learn. ICML 2015 2015, 2, 1180–1189. [Google Scholar]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-adversarial training of neural networks. Adv. Comput. Vis. Pattern Recognit. 2017, 17, 189–209. [Google Scholar] [CrossRef] [Green Version]
- Bolte, J.A.; Kamp, M.; Breuer, A.; Homoceanu, S.; Schlicht, P.; Huger, F.; Lipinski, D.; Fingscheidt, T. Unsupervised Domain Adaptation to Improve Image Segmentation Quality Both in the Source and Target Domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira, F.; Vaughan, J.W. A theory of learning from different domains. Mach. Learn. 2010, 79, 151–175. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random Erasing Data Augmentation. arXiv 2017, arXiv:1708.04896v2. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; Abbeel, P. Domain Randomization for Transferring Deep Neural Networks Simulation to the Real World. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017; Iros: Vancouver, BC, Canada, 2017. [Google Scholar]
- Bowles, C.; Chen, L.; Guerrero, R.; Bentley, P.; Gunn, R.; Hammers, A.; Dickie, D.A.; Hernández, M.V.; Wardlaw, J.; Rueckert, D. GAN Augmentation: Augmenting Training Data using Generative Adversarial Networks. arXiv 2018, arXiv:1810.10863. [Google Scholar]
- Liang, D.; Yang, F.; Zhang, T.; Yang, P. Understanding mixup training methods. IEEE Access 2018, 6, 58774–58783. [Google Scholar] [CrossRef]
Ferrite | Copper | Martensite | |||
---|---|---|---|---|---|
Metric | Training | Testing | Testing | Training | Testing |
N [-] | 12 | 1 | 3 | ||
N [-] | 3940 | 860 | 357 | 763 | 168 |
p [%] | 5.35 | 6.97 | - | - | - |
p [%] | 33.70 | 34.30 | 89.92 | 36.56 | 33.92 |
p [%] | 0.06 | 0.09 | - | - | - |
p [%] | 2.34 | 2.21 | 12.13 | 0.18 | 0.17 |
P [%] | 1.15 | 2.00 | - | - | - |
P [%] | 10.75 | 10.00 | 20.45 | 0.62 | 0.63 |
Augmentation Type | Description: Aug. Type/Parameter(s) | x | p |
---|---|---|---|
Affine transformation | Linear transformation/rotate, shift and scale limit | 30, 0.1, 0.1 | 0.8 |
Rotation 90 | -/- | - | 0.25 |
Reflection | -/- | - | 0.25 |
Elastic transformation | Local deformations/alpha affine, alpha, sigma, approx. | 0, 40, 6, True | 0.4 |
Optical distortion | Barrel or pincushion/distort limit, shift limit | 0.1, 0.5 | 0.25 |
Gaussian blurring | Convolution Gaussian kernel/blur kernel size | 7 | 0.2 |
Motion blurring | Convolution motion-blur kernel/blur kernel size | 3 | 0.2 |
Gaussian noise | -/var limit | 0.015 | 0.4 |
Contrast | -/limit | 0.15 | 0.4 |
Brightness | -/limit | 0.1 | 0.4 |
Experiment # | Resolution | Brightness | Contrast | Gaussian Blurring | Motion Blurring | Gaussian Noise | Elastic Transformation | Optical Distortion | Ferrite mIoU (s) | Ferrite mIoU (s) | Ferrite mIoU (s) | Copper mIoU (t) | Martensite mIoU (t) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | N 0.25 | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | 0.75 | 0.49 | 0.74 | 0.55 | 0.05 |
2 | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | 0.77 | 0.55 | 0.77 | 0.37 | 0.06 | |
3 | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | ✗ | 0.74 | 0.52 | 0.75 | 0.68 | 0.07 | |
4 | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ | 0.76 | 0.51 | 0.75 | 0.66 | 0.05 | |
5 | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | 0.70 | 0.51 | 0.73 | 0.67 | 0.13 | |
6 | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | ✗ | 0.76 | 0.52 | 0.76 | 0.67 | 0.17 | |
7 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✓ | 0.76 | 0.50 | 0.75 | 0.67 | 0.09 | |
8 | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ | 0.75 | 0.52 | 0.75 | 0.51 | 0.06 | |
9 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 0.82 | 0.60 | 0.80 | 0.33 | 0.14 | |
10 | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | 0.81 | 0.66 | 0.82 | 0.26 | 0.14 | |
11 | N | ✗ | ✓ | ✓ | ✓ | ✗ | ✓ | ✓ | 0.84 | 0.71 | 0.85 | 0.61 | 0.15 |
Experiment # | Resolution | Training Set | DSIC Type | Ferrite mIoU | Ferrite mIoU | Ferrite mIoU | Martensite mIoU | Copper mIoU |
---|---|---|---|---|---|---|---|---|
1 | N 0.25 | m | - | - | - | - | 0.43 | - |
2 | m + f | - | 0.82 | 0.68 | 0.83 | 0.31 | 0.38 | |
3 | m + f | SWC | 0.82 | 0.62 | 0.81 | 0.43 | 0.32 | |
4 | m + f | SC | 0.80 | 0.64 | 0.81 | 0.39 | 0.27 | |
5 | m + f | SWSC | 0.79 | 0.62 | 0.80 | 0.43 | 0.31 | |
6 | N | m + f | SWSC | 0.83 | 0.67 | 0.83 | 0.47 | 0.58 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, A.; Durmaz, A.R.; Straub, T.; Eberl, C. Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning. Materials 2020, 13, 3298. https://doi.org/10.3390/ma13153298
Thomas A, Durmaz AR, Straub T, Eberl C. Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning. Materials. 2020; 13(15):3298. https://doi.org/10.3390/ma13153298
Chicago/Turabian StyleThomas, Akhil, Ali Riza Durmaz, Thomas Straub, and Chris Eberl. 2020. "Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning" Materials 13, no. 15: 3298. https://doi.org/10.3390/ma13153298
APA StyleThomas, A., Durmaz, A. R., Straub, T., & Eberl, C. (2020). Automated Quantitative Analyses of Fatigue-Induced Surface Damage by Deep Learning. Materials, 13(15), 3298. https://doi.org/10.3390/ma13153298