A Mathematical Model for the Electrical Resistivity of Cement Paste at Early Ages Considering the Partially Saturated State
Abstract
:1. Introduction
2. A Mathematical Model of Electrical Resistivity
2.1. Correction of Temperature Effect
2.2. A Mathematical Model of Resistivity
3. Experiment
3.1. Materials and Sample Preparation
3.2. Non-Contact Electrical Resistivity Measurement
3.3. Isothermal Calorimetry Experiment
4. Experiment Results and Discussion
4.1. Hydration Degree
4.2. Electrical Resistivity
4.3. Verification of the Mathematical Model
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pang, X.; Bentz, D.P.; Meyer, C.; Funkhouser, G.P.; Darbe, R. A comparison study of Portland cement hydration kinetics as measured by chemical shrinkage and isothermal calorimetry. Cem. Concr. Compos. 2013, 39, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Dabiĉ, P.; Krstuloviĉ, R.; Rušiĉ, D. A new approach in mathematical modelling of cement hydration development. Cem. Concr. Res. 2000, 30, 1017–1021. [Google Scholar] [CrossRef]
- Yin, B.; Kang, T.; Kang, J.; Chen, Y.; Wu, L.; Du, M. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics. Appl. Clay Sci. 2018, 166, 146–158. [Google Scholar] [CrossRef]
- Rajabipour, F. Insitu Electrical Sensing and Material Health Monitoring in Concrete Structures. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2006. [Google Scholar]
- Spragg, R.; Villani, C.; Snyder, K.; Bentz, D.; Bullard, J.W.; Weiss, J. Factors that influence electrical resistivity measurements in cementitious systems. Transp. Res. Rec. 2013, 2342, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wei, X.; Li, W. Preliminary interpretation of portland cement hydration process using resistivity measurements. Mater. J. 2003, 100, 253–257. [Google Scholar] [CrossRef]
- Xiao, L.; Li, Z. Early-age hydration of fresh concrete monitored by non-contact electrical resistivity measurement. Cem. Concr. Res. 2008, 38, 312–319. [Google Scholar] [CrossRef]
- Bu, Y.; Weiss, J. The influence of alkali content on the electrical resistivity and transport properties of cementitious materials. Cem. Concr. Compos. 2014, 51, 49–58. [Google Scholar] [CrossRef]
- Zuo, Y.; Zi, J.; Wei, X. Hydration of cement with retarder characterized via electrical resistivity measurements and computer simulation. Constr. Build. Mater. 2014, 53, 411–418. [Google Scholar] [CrossRef]
- Li, W.; Zhu, X.; Hong, J.; She, W.; Wang, P.; Zuo, W. Effect of anionic emulsifier on cement hydration and its interaction mechanism. Constr. Build. Mater. 2015, 93, 1003–1011. [Google Scholar] [CrossRef]
- Farzanian, K.; Teixeira, K.P.; Rocha, I.P.; De Sa Carneiro, L.; Ghahremaninezhad, A. The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers. Constr. Build. Mater. 2016, 109, 156–165. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z. Application of GEM Equation in microstructure characterization of cement-based materials. J. Mater. Civ. Eng. 2009, 21, 648–656. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Jiang, Q. Continuous tracking of the relationship between resistivity and pore structure of cement pastes. Constr. Build. Mater. 2014, 53, 26–31. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Liu, L.; Jiang, Q. An analytical model for determining the relative electrical resistivity of cement paste and C–S–H gel. Constr. Build. Mater. 2013, 48, 647–655. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Chen, E.; Shao, H.Y. Impedance measurement to characterize the pore structure in Portland cement paste. Constr. Build. Mater. 2014, 51, 106–112. [Google Scholar] [CrossRef]
- Liao, Y.; Wei, X. Penetration resistance and electrical resistivity of cement paste with superplasticizer. Mater. Struct. 2014, 47, 563–570. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, J.; Wang, Y.; Fang, G.; Liu, Y.; Xing, F. Evolutionary trace for early hydration of cement paste using electrical resistivity method. Constr. Build. Mater. 2016, 119, 16–20. [Google Scholar] [CrossRef]
- Xiao, L.; Wei, X. Early age compressive strength of pastes by electrical resistivity method and maturity method. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 983–989. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, L.; Li, Z. Prediction of standard compressive strength of cement by the electrical resistivity measurement. Constr. Build. Mater. 2012, 31, 341–346. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, L. Kinetics parameters of cement hydration by electrical resistivity measurement and calorimetry. Adv. Cem. Res. 2014, 26, 187–193. [Google Scholar] [CrossRef]
- Wei, X.; Xiao, L. Effect of temperature on the electrical resistivity of Portland cement pastes. Adv. Cem. Res. 2012, 24, 69–76. [Google Scholar] [CrossRef]
- Liao, Y.; Wei, X. Relationship between chemical shrinkage and electrical resistivity for cement pastes at early age. J. Mater. Civ. Eng. 2014, 26, 384–387. [Google Scholar] [CrossRef]
- Zuo, Y.; Wei, X. Relations among electrical resistivity, chemical and autogenous shrinkage of cement pastes. Adv. Cem. Res. 2015, 27, 175–183. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, X.H.; He, Z.; Shao, H.Y.; Li, Z.J.; Chen, E. Hydration process of fly ash blended cement pastes by impedance measurement. Constr. Build. Mater. 2016, 113, 939–950. [Google Scholar] [CrossRef]
- Tang, S.W.; Li, Z.J.; Shao, H.Y.; Chen, E. Characterization of early-age hydration process of cement pastes based on impedance measurement. Constr. Build. Mater. 2014, 68, 491–500. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, X.H.; He, Z.; Zhou, W.; Shao, H.Y.; Li, Z.J.; Wu, T.; Chen, E. The review of early hydration of cement-based materials by electrical methods. Constr. Build. Mater. 2017, 146, 15–29. [Google Scholar] [CrossRef]
- Tang, S.W.; Cai, X.H.; Zhou, W.; Shao, H.Y.; He, Z.; Li, Z.J.; Ji, W.M.; Chen, E. In-situ and continuous monitoring of pore evolution of calcium sulfoaluminate cement at early age by electrical impedance measurement. Constr. Build. Mater. 2016, 117, 8–19. [Google Scholar] [CrossRef]
- Cai, R.; He, Z.; Tang, S.; Wu, T.; Chen, E. The early hydration of metakaolin blended cements by non-contact impedance measurement. Cem. Concr. Compos. 2018, 92, 70–81. [Google Scholar] [CrossRef]
- Valori, A.; McDonald, P.J.; Scrivener, K.L. The morphology of C–S–H: Lessons from 1H nuclear magnetic resonance relaxometry. Cem. Concr. Res. 2013, 49, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Muller, A.C.A.; Scrivener, K.L.; Gajewicz, A.M.; McDonald, P.J. Use of bench-top NMR to measure the density, composition and desorption isotherm of C–S–H in cement paste. Microporous Mesoporous Mater. 2013, 178, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Königsberger, M.; Hellmich, C.; Pichler, B. Densification of C-S-H is mainly driven by available precipitation space, as quantified through an analytical cement hydration model based on NMR data. Cem. Concr. Res. 2016, 88, 170–183. [Google Scholar] [CrossRef]
- Hansen, T.C. Physical structure of hardened cement paste. A classical approach. Mater. Struct. 1986, 19, 423–436. [Google Scholar] [CrossRef]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice Hall: Upper Saddle River, NJ, USA, 2003; ISBN 978-0-13-064632-3. [Google Scholar]
- Jennings, H.M. Colloid model of C−S−H and implications to the problem of creep and shrinkage. Mater. Struct. 2004, 37, 59–70. [Google Scholar] [CrossRef]
- Weiss, J.; Snyder, K.; Bullard, J.; Bentz, D. Using a saturation function to interpret the electrical properties of partially saturated concrete. J. Mater. Civ. Eng. 2013, 25, 1097–1106. [Google Scholar] [CrossRef]
- Rajabipour, F.; Weiss, J. Electrical conductivity of drying cement paste. Mater. Struct. 2007, 40, 1143–1160. [Google Scholar] [CrossRef]
- Spragg, R.; Bu, Y.; Snyder, K.; Bentz, D.; Weiss, J. Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning; Purdue University: West Lafayette, IN, USA, 2013. [Google Scholar]
- Spencer, R.W. Measurement of the moisture content of concrete. J. Proc. 1937, 34, 45–64. [Google Scholar]
- Whittington, H.W.; McCarter, J.; Forde, M.C. The conduction of electricity through concrete. Mag. Concr. Res. 1981, 33, 48–60. [Google Scholar] [CrossRef]
- Buenfeld, N.R.; Newman, J.B. The permeability of concrete in a marine environment. Mag. Concr. Res. 1984, 36, 67–80. [Google Scholar] [CrossRef]
- Barron, J.J.; Ashton, C. The effect of temperature on conductivity measurement. TSP 2005, 7, 1–5. [Google Scholar]
- Rajabipour, F.; Weiss, J. Linking Health monitoring in concrete structures with durability performance simulations. In Proceedings of the Structure Congress, St. Louis, MO, USA, 18–21 May 2006; American Society of Civil Engineers: Reston, VA, USA, 2006; pp. 1–10. [Google Scholar]
- McCarter, W.J.; Starrs, G.; Chrisp, T.M. Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cem. Concr. Res. 2000, 30, 1395–1400. [Google Scholar] [CrossRef]
- Sant, G.; Rajabipour, F.; Weiss, W. The influence of temperature on electrical conductivity measurements and maturity predictions in cementitious materials during hydration. Indian Concr. J. 2008, 82, 7–16. [Google Scholar]
- Zaccardi, Y.A.V.; García, J.F.; Huélamo, P.; Maio, Á.A.D. Influence of temperature and humidity on Portland cement mortar resistivity monitored with inner sensors. Mater. Cor. 2009, 60, 294–299. [Google Scholar] [CrossRef]
- Carino, N.J.; Lew, H.S. The Maturity Method: From Theory to Application; American Society of Civil Engineers: Reston, VN, USA, 2001; pp. 1–19. [Google Scholar]
- Sant, G.; Weiss, J. Applications that require a correction before the maturity concept is applied. In Proceedings of the International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 13–15 October 2008. [Google Scholar]
- Poole, J.L.; Riding, K.A.; Folliard, K.J.; Juenger, M.C.; Schindler, A.K. Methods for calculating activation energy for Portland cement. Aci. Mater. J. 2007, 104, 86. [Google Scholar]
- McLachlan, D.S.; Blaszkiewicz, M.; Newnham, R.E. Electrical resistivity of composites. J. Am. Ceram. Soc. 1990, 73, 2187–2203. [Google Scholar] [CrossRef]
- McLachlan, D.S.; Rosenbaum, R.; Albers, A.; Eytan, G.; Grammatica, N.; Hurvits, G.; Pickup, J.; Zaken, E. The temperature and volume fraction dependence of the resistivity of granular Al-Ge near the percolation threshold. J. Phys. Condens. Matter 1993, 5, 4829–4842. [Google Scholar] [CrossRef]
- Oh, B.H.; Jang, S.Y. Prediction of diffusivity of concrete based on simple analytic equations. Cem. Concr. Res. 2004, 34, 463–480. [Google Scholar] [CrossRef]
- Cui, L.; Cahyadi, J.H. Permeability and pore structure of OPC paste. Cem. Concr. Res. 2001, 31, 277–282. [Google Scholar] [CrossRef]
- Castro, J.; Spragg, R.; Kompare, P. Portland Cement Concrete Pavement Permeability Performance; Purdue University: West Lafayette, IN, USA, 2010. [Google Scholar]
- Backe, K.R.; Lile, O.B.; Lyomov, S.K. Characterising Curing Cement Slurries by Electrical Conductivity. In Proceedings of the SPE Western Regional Meeting, Bakersfield, CA, USA, 10–13 May 1998; Society of Petroleum Engineers: Richardson, TX, USA, 1998. [Google Scholar]
- Bentz, D.P. A virtual rapid chloride permeability test. Cem. Concr. Compos. 2007, 29, 723–731. [Google Scholar] [CrossRef]
- Snyder, K.A.; Feng, X.; Keen, B.D.; Mason, T.O. Estimating the electrical conductivity of cement paste pore solutions from OH−, K+ and Na+ concentrations. Cem. Concr. Res. 2003, 33, 793–798. [Google Scholar] [CrossRef]
- Estimation of Pore Solution Conductivity. Available online: http://concrete.nist.gov/poresolncalc.html (accessed on 24 July 2020).
- Oh, B.H.; Cha, S.W. Nonlinear analysis of temperature and moisture distributions in early-age concrete structures based on degree of hydration. Mater. J. 2003, 100, 361–370. [Google Scholar] [CrossRef]
- Bentz, D.P.; Jensen, O.M.; Coats, A.M.; Glasser, F.P. Influence of silica fume on diffusivity in cement-based materials: I. experimental and computer modeling studies on cement pastes. Cem. Concr. Res. 2000, 30, 953–962. [Google Scholar] [CrossRef]
- Ye, G. Percolation of capillary pores in hardening cement pastes. Cem. Concr. Res. 2005, 35, 167–176. [Google Scholar] [CrossRef]
- Bejaoui, S.; Bary, B. Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model. Cem. Concr. Res. 2007, 37, 469–480. [Google Scholar] [CrossRef]
- Nokken, M.R.; Hooton, R.D. Using pore parameters to estimate permeability or conductivity of concrete. Mater. Struct. 2007, 41, 1. [Google Scholar] [CrossRef]
- Coverdale, R.T.; Christensen, B.J.; Mason, T.O.; Jennings, H.M.; Garboczi, E.J. Interpretation of the impedance spectroscopy of cement paste via computer modelling. J. Mater. Sci. 1994, 29, 4984–4992. [Google Scholar] [CrossRef]
- Bentz, D.P.; Garboczi, E.J. Percolation of phases in a three-dimensional cement paste microstructural model. Cem. Concr. Res. 1991, 21, 325–344. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Bentz, D.P. Computer simulation of the diffusivity of cement-based materials. J. Mater. Sci. 1992, 27, 2083–2092. [Google Scholar] [CrossRef]
- Isichenko, M. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 1992, 64, 961–1043. [Google Scholar] [CrossRef] [Green Version]
- Neithalath, N.; Persun, J.; Manchiryal, R.K. Electrical conductivity based microstructure and strength prediction of plain and modified concretes. Int. J. Adv. Eng. Sci. Appl. Math. 2010, 2, 83–94. [Google Scholar] [CrossRef]
Mineral Composition | C3S | C2S | C3A | C4AF | Gypsum | K2O | Na2O | Total |
---|---|---|---|---|---|---|---|---|
Mass fraction (%) | 65.78 | 7.75 | 6.94 | 8.64 | 6.99 | 0.68 | 0.13 | 97.91 |
Hydration heat (kJ/kg) | 517 | 262 | 867 | 418 | 457 |
Mix | ϕc | M | m | R2 |
---|---|---|---|---|
P35 | 0.18 | 262.1 | 2.184 | 0.9899 |
P45 | 0.18 | 174.2 | 2.003 | 0.9721 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Xu, X.; Ji, H.; Tian, Z.; Jin, X.; Jin, N.; Yan, D.; Tang, S. A Mathematical Model for the Electrical Resistivity of Cement Paste at Early Ages Considering the Partially Saturated State. Materials 2020, 13, 3306. https://doi.org/10.3390/ma13153306
Tian Y, Xu X, Ji H, Tian Z, Jin X, Jin N, Yan D, Tang S. A Mathematical Model for the Electrical Resistivity of Cement Paste at Early Ages Considering the Partially Saturated State. Materials. 2020; 13(15):3306. https://doi.org/10.3390/ma13153306
Chicago/Turabian StyleTian, Ye, Xin Xu, Haodong Ji, Zushi Tian, Xianyu Jin, Nanguo Jin, Dongming Yan, and Shengwen Tang. 2020. "A Mathematical Model for the Electrical Resistivity of Cement Paste at Early Ages Considering the Partially Saturated State" Materials 13, no. 15: 3306. https://doi.org/10.3390/ma13153306
APA StyleTian, Y., Xu, X., Ji, H., Tian, Z., Jin, X., Jin, N., Yan, D., & Tang, S. (2020). A Mathematical Model for the Electrical Resistivity of Cement Paste at Early Ages Considering the Partially Saturated State. Materials, 13(15), 3306. https://doi.org/10.3390/ma13153306