Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Simulations of Different Environmental Environments
2.3. Simulation of Aging Process
2.4. Routine Index Test
2.5. Rheological Properties Test
2.6. Aging Structural Characteristics Analysis
3. Results and Discussion
3.1. Physical Properties of Asphalt
3.2. Rheological Behavior Analysis
3.2.1. High-Temperature Properties
3.2.2. Moderate-Temperature Properties
3.2.3. Low-Temperature Properties
3.3. Four-Component Analysis
3.4. Infrared Spectra Analysis
3.5. Scanning Electron Microscopy
4. Conclusions and Recommendations
- High temperature, UV radiation and water can act as adverse environmental factors for asphalt pavement and accelerate the asphalt aging process. The aging of asphalt is also accelerated in environments with acid rain or salt solution erosion.
- After UV aging, the physical properties of asphalt diminish, whereby the penetration level decreases, the softening point increases, and the asphalt becomes brittle and hard. The rutting factor, R, fatigue factor, and stiffness modulus increase, Jnr and m-value decrease and the rutting resistance of asphalt improves, but fatigue cracking and temperature shrinkage cracking are readily apparent.
- In different environments, the swelling/expansion of the waste rubber powder in rubber asphalt slows the rubber powder’s ability to crosslink between polymer molecules. After UV radiation, the molecules in the asphalt C-H, C-C, and C=C bonds break due to aging.
- The light components in asphalt migrate to heavy components, and the asphalt gradually transforms from a solid/gel type to a gel type, resulting in a decrease of the low-temperature deformation ability of the asphalt. This is because the light-shielding effect of carbon black in waste rubber powder can alleviate the UV aging behavior of asphalt. Although the aging law is roughly the same for the base asphalt and rubber asphalt, the anti-aging properties of rubber asphalt are better than that those of base asphalt overall.
Author Contributions
Funding
Conflicts of Interest
References
- Ziari, H.; Moniri, A.; Norouzi, N. The effect of nanoclay as bitumen modifier on rutting performance of asphalt mixtures containing high content of rejuvenated reclaimed asphalt pavement. Pet. Sci. Technol. 2019, 37, 1946–1951. [Google Scholar] [CrossRef]
- Jin, J.; Liu, L.; Liu, R.; Wei, H.; Qian, G.; Zheng, J.; Xie, W.; Lin, F.; Xie, J. Preparation and thermal performance of binary fatty acid with diatomite as form-stable composite phase change material for cooling asphalt pavements. Constr. Build. Mater. 2019, 226, 616–624. [Google Scholar] [CrossRef]
- Batista, K.B.; Padilha, R.P.L.; Castro, T.O.; Silva, C.F.S.C.; Araújo, M.F.A.S.; Leite, L.F.M.; Pasa, V.M.D.; Lins, V.F.C. High-temperature, low-temperature and weathering aging performance of lignin modified asphalt binders. Ind. Crops Prod. 2018, 111, 107–116. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Z.; Xu, G.; Shi, C. Evaluation of aging behaviors of asphalt binders through different rheological indices. Fuel 2018, 221, 78–88. [Google Scholar] [CrossRef]
- Gamarra, A.; Ossa, E.A. Thermo-oxidative aging of bitumen. Int. J. Pavement Eng. 2018, 19, 641–650. [Google Scholar] [CrossRef]
- Ruan, Y.; Davison, R.R.; Glover, C.J. The effect of long-term oxidation on the rheological properties of polymer modified asphalts☆. Fuel 2003, 82, 1763–1773. [Google Scholar] [CrossRef]
- Lv, S.; Liu, C.; Yao, H.; Zheng, J. Comparisons of synchronous measurement methods on various moduli of asphalt mixtures. Constr. Build. Mater. 2018, 158, 1035–1045. [Google Scholar] [CrossRef]
- Pan, J.; Tarefder, R.A. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation. Mol. Simul. 2016, 42, 667–678. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Pang, L.; Chen, H.; Hu, J.; Sun, Y.; Chen, Z. Research on Ultra Violet (UV) aging depth of asphalts. Constr. Build. Mater. 2018, 160, 620–627. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, S.; Zhao, Z.; Yu, J.; Wu, S. Physical and UV Aging Resistance Properties of Asphalts Modified by UV Absorbent Composited and Intercalated Layered Double Hydroxides. J. Nanosci. Nanotechnol. 2016, 16, 12714–12719. [Google Scholar] [CrossRef]
- Jin, J.; Tan, Y.; Liu, R.; Zheng, J.; Zhang, J. Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite-modified asphalt. J. Mater. Civ. Eng. 2019, 31, 04018388. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Constr. Build. Mater. 2017, 157, 635–646. [Google Scholar] [CrossRef]
- Souliman, M.I.; Mamlouk, M.S.; Kaloush, K.E. Preliminary prediction of endurance limit for asphalt rubber mixtures due to healing. Can. J. Civ. Eng. 2014, 41, 964–969. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Qian, G.; Zheng, J.; Zhang, Y. Three-dimensional simulation of aggregate and asphalt mixture using parameterized shape and size gradation. J. Mater. Civ. Eng. 2019, 31, 04019004. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ye, F. Experimental investigation on aging characteristics of asphalt based on rheological properties. Constr. Build. Mater. 2020, 231, 117158. [Google Scholar] [CrossRef]
- Tang, N.; Dong, R. Anti-Aging potential of sulphur in terminal blend rubberized asphalt binder. Constr. Build. Mater. 2020, 250, 118858. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Pei, J.; Amirkhanian, S.; Xiao, F.; Ye, Q.; Fan, Z. Low temperature and fatigue characteristics of treated crumb rubber modified asphalt after a long term aging procedure. J. Cleaner Prod. 2019, 234, 1262–1274. [Google Scholar] [CrossRef]
- Yin, J.; Wang, S.; Lv, F. Improving the short-term aging resistance of asphalt by addition of crumb rubber radiated by microwave and impregnated in epoxidized soybean oil. Constr. Build. Mater. 2013, 49, 712–719. [Google Scholar] [CrossRef]
- Ragni, D.; Ferrotti, G.; Lu, X.; Canestrari, F. Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Mater. Des. 2018, 160, 514–526. [Google Scholar] [CrossRef]
- Wu, Y.T. Low-temperature rheological behavior of ultraviolet irradiation aged matrix asphalt and rubber asphalt binders. Constr. Build. Mater. 2017, 157, 708–717. [Google Scholar] [CrossRef]
- Hofko, B.; Hospodka, M. Rolling thin film oven test and pressure aging vessel conditioning parameters: Effect on viscoelastic behavior and binder performance grade. Transp. Res. Rec. 2016, 2574, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Hou, X.; Xiao, F.; Wang, J.; Amirkhanian, S. Identification of asphalt aging characterization by spectrophotometry technique. Fuel 2018, 226, 230–239. [Google Scholar] [CrossRef]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Santos, S.d.; Bueno, M.; Kuentzel, S.; Hugener, M.; Partl, M.N. Influence of short and long term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures. Constr. Build. Mater. 2014, 51, 414–423. [Google Scholar] [CrossRef]
- Traxler, R.N. Asphalt: Its Composition, Properties and Uses; Reinhold Publishing Corporation: New York, NY, USA, 1961. [Google Scholar]
- Lu, C.; Wang, W.; Zhou, Q.; Wei, S.; Wang, C. Mechanical behavior degradation of recycled aggregate concrete after simulated acid rain spraying. J. Cleaner Prod. 2020, 262, 121237. [Google Scholar] [CrossRef]
- García-Vera, V.E.; Lanzón, M. Physical-chemical study, characterisation and use of image analysis to assess the durability of earthen plasters exposed to rain water and acid rain. Constr. Build. Mater. 2018, 187, 708–717. [Google Scholar] [CrossRef]
- Feng, D.; Yi, J.; Wang, D.; Chen, L. Impact of salt and freeze–thaw cycles on performance of asphalt mixtures in coastal frozen region of China. Cold Reg. Sci. Technol. 2010, 62, 34–41. [Google Scholar] [CrossRef]
- Xiong, R.; Chu, C.; Qiao, N.; Wang, L.; Yang, F.; Sheng, Y.; Guan, B.; Niu, D.; Geng, J.; Chen, H. Performance evaluation of asphalt mixture exposed to dynamic water and chlorine salt erosion. Constr. Build. Mater. 2019, 201, 121–126. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, C.; Gao, F.; Li, T.; Tan, Y. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt. Constr. Build. Mater. 2016, 127, 466–474. [Google Scholar] [CrossRef]
- Kiser, J.V.L. Asphalt rubber: Overcoming the obstacles. Scrap 2003, 60, 46–50, 52. [Google Scholar]
- Navarro, F.J.; Partal, P.; Martínez-Boza, F.; Valencia, C.; Gallegos, C. Rheological characteristics of ground tire rubber-modified bitumens. Chem. Eng. J. 2002, 89, 53–61. [Google Scholar] [CrossRef]
- Wei, H.; Bai, X.; Qian, G.; Wang, F.; Li, Z.; Jin, J.; Zhang, Y. Aging mechanism and properties of SBS modified bitumen under complex environmental conditions. Materials 2019, 12, 1189. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.M.; Miknis, F.P. Use of environmental SEM to study asphalt-water interactions. J. Mater. Civ. Eng. 1998, 10, 121–124. [Google Scholar] [CrossRef]
- Zeng, W.; Wu, S.; Wen, J.; Chen, Z. The temperature effects in aging index of asphalt during UV aging process. Constr. Build. Mater. 2015, 93, 1125–1131. [Google Scholar] [CrossRef]
- Feng, Z.; Yu, J.; Zhang, H.; Kuang, D.; Xue, L. Effect of ultraviolet aging on rheology, chemistry and morphology of ultraviolet absorber modified bitumen. Mater. Struct. 2013, 46, 1123–1132. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, J.; Feng, K.; Xue, L.; Xie, D. Synthesis and characterization of triethoxyvinylsilane surface modified layered double hydroxides and application in improving UV aging resistance of bitumen. Appl. Clay Sci. 2016, 120, 1–8. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, S.; Bian, H.; Guo, Q.; Li, X. FTIR and rheology analysis of aging on different ultraviolet absorber modified bitumens. Constr. Build. Mater. 2016, 115, 48–53. [Google Scholar] [CrossRef]
- Chen, A.; Liu, G.; Zhao, Y.; Li, J.; Pan, Y.; Zhou, J. Research on the aging and rejuvenation mechanisms of asphalt using atomic force microscopy. Constr. Build. Mater. 2018, 167, 177–184. [Google Scholar] [CrossRef]
- Dong, D.; Huang, X.; Li, X.; Zhang, L. Swelling process of rubber in asphalt and its effect on the structure and properties of rubber and asphalt. Constr. Build. Mater. 2012, 29, 316–322. [Google Scholar] [CrossRef]
- Feng, Z.; Rao, W.; Chen, C.; Tian, B.; Li, X.; Li, P.; Guo, Q. Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres. Constr. Build. Mater. 2016, 111, 495–501. [Google Scholar] [CrossRef]
- Shen, J.; Li, B.; Xie, Z. Interaction between crumb rubber modifier (CRM) and asphalt binder in dry process. Constr. Build. Mater. 2017, 149, 202–206. [Google Scholar] [CrossRef]
- Durrieu, F.; Farcas, F.; Mouillet, V. The influence of UV aging of a Styrene/Butadiene/Styrene modified bitumen: Comparison between laboratory and on site aging. Fuel 2007, 86, 1446–1451. [Google Scholar] [CrossRef]
- Romero-Sánchez, M.D.; Mercedes Pastor-Blas, M.; Martín-Martínez, J.M.; Walzak, M.J. Addition of ozone in the UV radiation treatment of a synthetic styrene-butadiene-styrene (SBS) rubber. Int. J. Adhes. Adhes. 2005, 25, 358–370. [Google Scholar] [CrossRef]
- Pang, L.; Zhang, X.; Wu, S.; Ye, Y.; Li, Y. Influence of water solute exposure on the chemical evolution and rheological properties of asphalt. Materials. 2018, 11, 983. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Yu, J.; Zhang, C.; Sun, Y. Effect of ultraviolet aging on rheological properties of organic intercalated layered double hydroxides modified asphalt. Constr. Build. Mater. 2015, 75, 421–428. [Google Scholar] [CrossRef]
- Li, P.; Nian, T.; Wei, D.; Lin, M. Quantitative analysis method for FTIR and exploration on rheological parameters of aging asphalt binders. J. Huazhong Univ. Sci. Technol. 2018, 46, 34–39. [Google Scholar]
Properties Indices | Technical Requirement | Measured Value | Experiment Methods |
---|---|---|---|
Penetration (25 °C), 0.1 mm | 60–80 | 62.1 | ASTM D5 |
Penetration index value, PI | −1.5–1.0 | 0.6 | ASTM D5 |
Softening point, °C | ≥46 | 47.6 | ASTM D36 |
Ductility (15 °C), cm | ≥100 | >100 | ASTM D113 |
Wax content, % | ≤2.2 | 1.9 | ASTM D721 |
Density (15 °C), g/cm3 | - | 1.029 | ASTM D70 |
Dynamic viscosity (60 °C), Pa·s | ≥180 | 217 | ASTM D2171 |
Test Items | Measured Value | Technical Requirement |
---|---|---|
Residue, % | 0.6 | <10 |
Relative density, g/cm3 | 1.28 | 1.10–1.30 |
Moisture, % | 0 | <1 |
Metal content, % | 0.005 | <0.03 |
Fiber content, % | 0.015 | <1 |
Ash | 7.2 | ≤8 |
Acetone extract | 7.3 | ≤16 |
Carbon black content | 29.1 | ≥28 |
Rubber hydrocarbon content, % | 59 | ≥48 |
Properties Indices | Technical Requirement | Measured Value | Test Methods |
---|---|---|---|
Penetration (25 °C), 0.1 mm | 50–70 | 57.9 | ASTM D5 |
Softening Point, °C | >58 | 64.2 | ASTM D36 |
Ductility (5 °C), cm | >10 | 10.4 | ASTM D113 |
Wax content, % | ≤2.2 | 2 | ASTM D721 |
Density (15 °C), g/cm3 | - | 1.058 | ASTM D70 |
Asphalt | Property Index | Original | TFOT | UV | UV + Water | UV + Acid | UV + Salt |
---|---|---|---|---|---|---|---|
Base Asphalt | Penetration (0.1 mm) | 62.1 | 44.1 | 36 | 33.5 | 30.3 | 31.7 |
Softening Point (°C) | 47.6 | 53.2 | 55 | 55.5 | 58 | 56.5 | |
Rubber Asphalt | Penetration (0.1 mm) | 57.9 | 40 | 30.1 | 28.6 | 24 | 24.5 |
Softening Point (°C) | 64.2 | 69 | 71.5 | 71.9 | 75.3 | 73.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wei, H.; Dai, Y. Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt. Materials 2020, 13, 3376. https://doi.org/10.3390/ma13153376
Zhang Y, Wei H, Dai Y. Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt. Materials. 2020; 13(15):3376. https://doi.org/10.3390/ma13153376
Chicago/Turabian StyleZhang, Yuhao, Hui Wei, and Yinhan Dai. 2020. "Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt" Materials 13, no. 15: 3376. https://doi.org/10.3390/ma13153376
APA StyleZhang, Y., Wei, H., & Dai, Y. (2020). Influence of Different Aging Environments on Rheological Behavior and Structural Properties of Rubber Asphalt. Materials, 13(15), 3376. https://doi.org/10.3390/ma13153376