Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Al/PTFE Composites Preparation
2.3. Characterization
2.3.1. FTIR
2.3.2. SEM Analysis
2.3.3. Thermal Performance
2.3.4. XRD Pattern
2.3.5. Aging Resistant Test
3. Results and Discussion
3.1. FTIR
3.2. SEM Graphs of Al/PTFE Composites.
3.3. Process Optimization of Al/PTFE Composites
3.4. Thermal Properties of Al/PTFE Composites
3.5. Oxidation Mechanism of Al/PTFE Composites
3.6. Aging Resistant Performance of Al/PTFE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum agglomeration reduction in a composite propellant using tailored Al/PTFE particles. Combust. Flame 2014, 161, 311–321. [Google Scholar] [CrossRef]
- Miller, T.; Herr, J. Green rocket propulsion by reaction of Al and Mg powders and water. In Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, FL, USA, 11–14 July 2004; p. 4037. [Google Scholar] [CrossRef] [Green Version]
- Zarko, V.E.; Glotov, O.G. Formation of Al oxide particles in combustion of aluminized condensed systems. Sci. Technol. Energ. Mater. 2013, 74, 139–143. [Google Scholar] [CrossRef]
- Gany, A.; Caveny, L.H.; Summerfield, M. Aluminized solid propellants burning in a rocket motor flowfield. AIAA J. 1978, 16, 736–739. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J.; Zhang, S.; Dreizin, E.L. Exploring mechanisms for agglomerate reduction in composite solid propellants with polyethylene inclusion modified aluminum. Combust. Flame 2015, 162, 846–854. [Google Scholar] [CrossRef]
- Fedotova, T.D.; Glotov, O.G.; Zarko, V.E. Chemical analysis of aluminum as a propellant ingredient and determination of aluminum and aluminum nitride in condensed combustion products. Propellants Explos. Pyrotech. 2000, 25, 325–332. [Google Scholar] [CrossRef]
- Glotov, O.G.; Zarko, V.E.; Karasev, V.V. Problems and perspectives of investigating the formation and evolution of agglomerates by the sampling method. Combust. Explos. Shock Waves 2000, 36, 146–156. [Google Scholar] [CrossRef]
- Levitas, V.I.; McCollum, J.; Pantoya, M. Pre-stressing micron-scale aluminum core-shell particles to improve reactivity. Sci. Rep. 2015, 5, 7879. [Google Scholar] [CrossRef] [Green Version]
- Valluri, S.K.; Schoenitz, M.; Dreizin, E.L. Metal-rich aluminium-polytetrafluoroethylene reactive composite powders prepared by mechanical milling at different temperatures. J. Mater. Sci. 2017, 52, 7452–7465. [Google Scholar] [CrossRef]
- Dreizin, E.L.; Schoenitz, M. Mechanochemically prepared reactive and energetic materials: A review. J. Mater. Sci. 2017, 52, 11789–11809. [Google Scholar] [CrossRef]
- Sippel, T.R.; Son, S.F.; Groven, L.J. Altering reactivity of aluminum with selective inclusion of polytetrafluoroethylene through mechanical activation. Propellants Explos. Pyrotech. 2013, 38, 286–295. [Google Scholar] [CrossRef]
- Kim, K.T.; Kim, D.W.; Kim, C.K.; Choi, Y.J. A facile synthesis and efficient thermal oxidation of polytetrafluoroethylene-coated aluminum powders. Mater. Lett. 2016, 167, 262–265. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, Z.Q.; Yang, Y.T.; Shen, J.P.; Long, Z.; Li, Z.Q.; Cui, X.D.; Yang, G.C. Core-shell Al-polytetrafluoroethylene (PTFE) configurations to enhance reaction kinetics and energy performance for nanoenergetic materials. Chem. Eur. J. 2016, 22, 279–284. [Google Scholar] [CrossRef]
- Padhye, R.; Smith, D.K.; Korzeniewski, C.; Pantoya, M.L. Tailoring surface conditions for enhanced reactivity of aluminum powders with solid oxidizing agents. Appl. Surf. Sci. 2017, 402, 225–231. [Google Scholar] [CrossRef]
- Andrzejak, T.; Shafirovich, E.; Varma, A. Ignition mechanism of nickel-coated aluminum particles. Combust. Flame 2007, 150, 60–70. [Google Scholar] [CrossRef]
- Hahma, A.; Gany, A.; Palovuori, K. Combustion of activated aluminum. Combust. Flame 2006, 145, 464–480. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, J.; He, G.; Huang, C.; Yang, Z.; Liu, S.; Gong, F. Enhanced water resistance and energy performance of core–shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J. Mater. Sci. 2018, 53, 12091–12102. [Google Scholar] [CrossRef]
- Liu, S.; Ye, M.; Han, A.; Chen, X. Preparation and characterization of energetic materials coated superfine aluminum particles. Appl. Surf. Sci. 2014, 288, 349–355. [Google Scholar] [CrossRef]
- Huang, S.; Pan, M.; Deng, S.; Jiang, Y.; Zhao, J.; Levy-Wendt, B.; Tang, S.K.Y.; Zheng, X. Modified micro-emulsion synthesis of highly dispersed Al/PVDF composites with enhanced combustion properties. Adv. Eng. Mater. 2019, 21, 1801330. [Google Scholar] [CrossRef]
- Huang, C.; Jian, G.; DeLisio, J.B.; Wang, H.; Zachariah, M.R. Electrospray deposition of energetic polymer nanocomposites with high mass particle loadings: A prelude to 3D printing of rocket motors. Adv. Eng. Mater. 2015, 17, 95–101. [Google Scholar] [CrossRef]
- Kim, D.W.; Kim, K.T.; Min, T.S.; Kim, K.J.; Kim, S.H. Improved energetic-behaviors of spontaneously surface-mediated Al particles. Sci. Rep. 2017, 7, 4659. [Google Scholar] [CrossRef] [Green Version]
- Gromov, A.; Ilyin, A.; Förter-Barth, U.; Teipel, U. Characterization of aluminum powders: II. Aluminum nanopowders passivated by non-inert coatings. Propellants Explos. Pyrotech. 2006, 31, 401–409. [Google Scholar] [CrossRef]
- Koch, E.-C. Metal—Fluorocarbon Based Energetic Materials; Wiley-VCH: Weinheim, Germany, 2012; pp. 42–65. [Google Scholar] [CrossRef]
- Watson, K.W.; Pantoya, M.L.; Levitas, V.I. Melt-dispersion mechanism for fast reaction of aluminum particles: Extension for micron scale particles and fluorination. Appl. Phys. Lett. 2008, 92, 201917. [Google Scholar] [CrossRef]
- Mulamba, O.; Pantoya, M.L. Exothermic surface chemistry on aluminum particles promoting reactivity. Appl. Surf. Sci. 2014, 315, 90–94. [Google Scholar] [CrossRef]
- Dolgoborodov, A.Y.; Makhov, M.N.; Kolbanev, I.V.; Streletskii, A.N.; Fortov, V.E. Detonation in an aluminum-teflon mixture. J. Exp. Theor. Phys. 2005, 81, 311–314. [Google Scholar] [CrossRef]
- Gaurav, M.; Ramakrishna, P.A. Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. Combust. Flame 2016, 166, 203–215. [Google Scholar] [CrossRef]
- Zheng, X.; Curtis, A.D.; Shaw, W.L.; Dlott, D.D. Shock initiation of nano-Al + Teflon: Time-resolved emission studies. J. Phys. Chem. C 2013, 117, 4866–4875. [Google Scholar] [CrossRef]
- Conner, R.W.; Dlott, D.D. Ultrafast emission spectroscopy of exploding nanoaluminum in Teflon: Observations of aluminum fluoride. Chem. Phys. Lett. 2011, 512, 211–216. [Google Scholar] [CrossRef]
- Sun, S.; Ma, S.; Zhao, B.; Zhang, G.; Luo, Y. A facile way to prolong service life of double base propellant. Materials 2018, 11, 2236. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Zhao, B.; Zhang, G.; Luo, Y. Applying mechanically activated Al/PTFE in CMDB propellant. Propellants Explos. Pyrotech. 2018, 43, 1105–1114. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, T.; Zhao, B.; Zhang, G.; Luo, Y. Influence of polytetrafluorethylene on the mechanical and safety properties of a composite modified double base propellant. Cent. Eur. J. Energ. Mat. 2018, 15, 468–484. [Google Scholar] [CrossRef]
- Liang, C.Y.; Krimm, S. Infrared spectra of high polymers. III. Polytetrafluoroethylene and polychloro-trifluoroethylene. J. Chem. Phys. 1956, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, T.; Okabe, S.; Tanigaki, M.; Kurumada, K.; Ohshima, M.; Kanazawa, S. Morphology change in polytetrafluoroethylene (PTFE) porous membrane caused by heat treatment. Polym. Eng. Sci. 2000, 40, 809–817. [Google Scholar] [CrossRef]
- Clark, E.S. The molecular conformations of polytetrafluoroethylene: Forms II and IV. Polymer 1999, 40, 4659–4665. [Google Scholar] [CrossRef]
- Clark, E.S.; Muus, L.T. Partial disordering and crystal transitions in polytetrafluoroethylene. Z. Kristallogr. Cryst. Mater. 1962, 117, 119–127. [Google Scholar] [CrossRef]
- Peng, Z.H.; Li, Q.F.; Zhou, Q.S. Studies on dehydration kinetics of aluminium hydroxide. Light Met. 2010, 19–21. [Google Scholar] [CrossRef]
- McHale, J.M.; Navrotsky, A.; Perrotta, A.J. Effects of increased surface area and chemisorbed H2O on the relative stability of nanocrystalline γ-Al2O3 and α-Al2O3. J. Phys. Chem. B 1997, 101, 603–613. [Google Scholar] [CrossRef]
- Trunov, M.A.; Schoenitz, M.; Zhu, X.; Dreizin, E.L. Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust. Flame 2005, 140, 310–318. [Google Scholar] [CrossRef]
- Hasani, S.; Panjepour, M.; Shamanian, M. The oxidation mechanism of pure aluminum powder particles. Oxid. Met. 2012, 78, 179–195. [Google Scholar] [CrossRef]
- Coulet, M.; Rufino, B.; Esposito, P.; Neisius, T.; Isnard, O.; Denoyel, R. Oxidation mechanism of aluminum nanopowders. J. Phys. Chem. C 2015, 119, 25063–25070. [Google Scholar] [CrossRef]
- Jacob, R.J.; Jian, G.; Guerieri, P.M.; Zachariah, M.R. Energy release pathways in nanothermites follow through the condensed state. Combust. Flame 2015, 162, 258–264. [Google Scholar] [CrossRef]
- Watson, K.W.; Pantoya, M.L.; Levitas, V.I. Fast reactions with nano- and micrometer aluminum: A study on oxidation versus fluorination. Combust. Flame 2008, 155, 619–634. [Google Scholar] [CrossRef]
- McCollum, J.; Pantoya, M.L.; Iacono, S.T. Activating aluminum reactivity with fluoropolymer coatings for improved energetic composite combustion. ACS Appl. Mater. Inter. 2015, 7, 18742–18749. [Google Scholar] [CrossRef] [PubMed]
- Jeurgens, L.; Sloof, W.; Tichelaar, F.; Mittemeijer, E. Thermodynamic stability of amorphous oxide films on metals: Application to aluminum oxide films on aluminum substrates. Phys. Rev. B 2000, 62, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Sun, S.; Luo, Y.; Cheng, Y. Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation. Materials 2020, 13, 3384. https://doi.org/10.3390/ma13153384
Zhao B, Sun S, Luo Y, Cheng Y. Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation. Materials. 2020; 13(15):3384. https://doi.org/10.3390/ma13153384
Chicago/Turabian StyleZhao, Benbo, Shixiong Sun, Yunjun Luo, and Yuan Cheng. 2020. "Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation" Materials 13, no. 15: 3384. https://doi.org/10.3390/ma13153384
APA StyleZhao, B., Sun, S., Luo, Y., & Cheng, Y. (2020). Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation. Materials, 13(15), 3384. https://doi.org/10.3390/ma13153384