Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source
Abstract
:1. Introduction
2. Materials and Methods
2.1. Film Deposition
2.2. Film Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slack, G.A.; Tanzilli, R.A.; Pohl, R.O.; Vandersande, J.W. The Intrinsic Thermal Conductivity of AIN. J. Phys. Chem. Solids 1987, 48, 641–647. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, B.; Fang, Z.; Wang, X.; Tang, Y.; Sohn, J.; Wong, H.S.P.; Wong, S.S.; Lo, G.Q. All-Metal-Nitride RRAM Devices. IEEE Electron Device Lett. 2015, 36, 29–31. [Google Scholar] [CrossRef]
- Xiong, C.; Pernice, W.H.P.; Sun, X.; Schuck, C.; Fong, K.Y.; Tang, H.X. Aluminum Nitride as a New Material for Chip-Scale Optomechanics and Nonlinear Optics. New J. Phys. 2012, 14, 095014. [Google Scholar] [CrossRef]
- Kuo, P.K.; Auner, G.W.; Wu, Z.L. Microstructure and thermal conductivity of epitaxial AlN thin films. Thin Solid Films 1994, 253, 223–227. [Google Scholar] [CrossRef]
- Park, M.-H.; Kim, S.-H. Thermal conductivity of AlN thin films deposited by RF magnetron sputtering. Mater. Sci. Semicond. Process. 2012, 15, 6–10. [Google Scholar] [CrossRef]
- Xu, R.L.; Rojo, M.M.; Islam, S.M.; Sood, A.; Vareskic, B.; Katre, A.; Mingo, N.; Goodson, K.E.; Xing, H.G.; Jena, D.; et al. Thermal conductivity of crystalline AlN and the influence of atomic-scale defects. J. Appl. Phys. 2019, 126, 185105. [Google Scholar] [CrossRef]
- Knoops, H.C.M.; Faraz, T.; Arts, K.; Kessels, W.M.M. Status and Prospects of Plasma-Assisted Atomic Layer Deposition. J. Vac. Sci. Technol. A 2019, 37, 030902. [Google Scholar] [CrossRef] [Green Version]
- Puurunen, R.L.; Lindblad, M.; Rootc, A.; Krausea, A.O.I. Successive Reactions of Gaseous Trimethylaluminium and Ammonia on Porous Alumina. Phys. Chem. Chem. Phys. 2001, 3, 1093–1102. [Google Scholar] [CrossRef]
- Huheey, J.E. Inorganic Chemistry, 3rd ed.; Harper and Row: New York, NY, USA, 1983; p. A30. [Google Scholar]
- Alvarez, D.; Spiegelman, J.; Andachi, K.; Holmes, R.; Raynor, M.; Shimizu, H. Enabling Low Temperature Metal Nitride ALD Using Ultra-High Purity Hydrazine: ET/ID: Enabling Technologies and Innovative Devices. In Proceedings of the 2017 28th Annual SEMI Advanced Semiconductor Manufacturing Conference, Saratoga Springs, NY, USA, 15–18 May 2017; pp. 426–430. [Google Scholar]
- Wolf, S.; Edmonds, M.; Sardashti, K.; Clemons, M.; Park, J.H.; Yoshida, N.; Dong, L.; Nemani, S.; Yieh, E.; Holmes, R. Low-Temperature Amorphous Boron Nitride on Si0.7Ge0.3(001), Cu, and HOPG from Sequential Exposures of N2H4 and BCl3. Appl. Surf. Sci. 2018, 439, 689–696. [Google Scholar] [CrossRef]
- Hwang, S.M.; Pena, L.F.; Kim, H.S.; Kondusamy, A.L.N.; Qin, Z.; Jung, Y.C.; Veyan, J.-F.; Alvarez, D.; Spiegelman, J.; Kim, J. Vapor-phase Surface Cleaning of Electroplated Cu Films Using Anhydrous N2H4. ECS Trans. 2019, 92, 265–271. [Google Scholar] [CrossRef]
- Abdulagatov, A.I.; Ramazanov, S.M.; Dallaev, R.S.; Murliev, E.K.; Palchaev, D.K.; Rabadanov, M.K.; Abdulagatov, I.M. Atomic Layer Deposition of Aluminum Nitride Using Tris(Diethylamido)Aluminum and Hydrazine or Ammonia. Russ. Microelectron. 2018, 47, 118–130. [Google Scholar] [CrossRef]
- Abdulagatov, A.I.; Amashaev, R.R.; Ashurbekova, K.N.; Ashurbekova, K.N.; Rabadanov, M.K.; Abdulagatov, I.M. Atomic Layer Deposition of Aluminum Nitride and Oxynitride on Silicon Using Tris(dimethylamido)aluminum, Ammonia, and Water. Russ. J. Gen. Chem. 2018, 88, 1699–1706. [Google Scholar] [CrossRef]
- Mayer, T.M.; Rogers, J.W.; Michalske, T.A. Mechanism of Nucleation and Atomic Layer Growth of AlN on Si. Chem. Mater. 1991, 3, 641–646. [Google Scholar] [CrossRef]
- Liu, S.; Peng, M.; Hou, C.; He, Y.; Li, M.; Zheng, X. PEALD-Grown Crystalline AlN Films on Si(100) with Sharp Interface and Good Uniformity. Nanoscale Res. Lett. 2017, 12, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riihela, D.; Ritala, M.; Matero, R.; Leskela, M.; Jokinen, J.; Haussalo, P. Low Temperature Deposition of AlN Films by an Alternate Supply of Trimethyl Aluminum and Ammonia. Chem. Vap. Depos. 1996, 2, 277–283. [Google Scholar] [CrossRef]
- Meng, X.; Kim, H.S.; Lucero, A.T.; Hwang, S.M.; Lee, J.S.; Byun, Y.C.; Kim, J.; Hwang, B.K.; Zhou, X.; Young, C. Hollow Cathode Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using Pentachlorodisilane. ACS Appl. Mater. Interfaces 2018, 10, 14116–14123. [Google Scholar] [CrossRef]
- Meng, X.; Lee, J.; Ravichandran, A.; Byun, Y.C.; Lee, J.G.; Lucero, A.T.; Kim, S.J.; Ha, M.W.; Young, C.D.; Kim, J. Robust SiNx/GaN MIS-HEMTs With Crystalline Interfacial Layer Using Hollow Cathode PEALD. IEEE Electron Device Lett. 2018, 39, 1195–1198. [Google Scholar] [CrossRef]
- Kim, H.S.; Meng, X.; Kim, S.J.; Lucero, A.T.; Cheng, L.; Byun, Y.-C.; Lee, J.S.; Hwang, S.M.; Kondusamy, A.L.N.; Wallace, R.M.; et al. Investigation of the Physical Properties of Plasma Enhanced Atomic Layer Deposited Silicon Nitride as Etch Stopper. ACS Appl. Mater. Interfaces 2018, 10, 44825–44833. [Google Scholar] [CrossRef]
- Hwang, S.M.; Kondusamy, A.L.N.; Qin, Z.; Kim, H.S.; Meng, X.; Kim, J.; Hwang, B.K.; Zhou, X.; Telgenhoff, M.; Young, J. Hollow Cathode Plasma (HCP) Enhanced Atomic Layer Deposition of Silicon Nitride (SiNx) Thin Films Using Pentachlorodisilane (PCDS). ECS Trans. 2019, 89, 63–69. [Google Scholar] [CrossRef]
- Zazzera, L.A.; Moulder, J.F. XPS and SIMS Study of Anhydrous HF and UV/Ozone-Modified Silicon (100) Surfaces. J. Electrochem. Soc. 1989, 136, 484–491. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy, 2nd ed.; Perkin-Elmer Corporation: Minnesota, MN, USA, 1992; pp. 252–253. [Google Scholar]
- Paterson, W.G.; Onyszhuk, M. Co-ordination compounds of hydrazine Part 2.:The Interaction of Trimethylborane and Trimethylaluminum with Hydrazine. Can. J. Chem. 1961, 39, 2324–2329. [Google Scholar] [CrossRef]
- George, S.M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Sønsteby, H.H.; Yanguas-Gil, A.; Elam, J.W. Consistency and Reproducibility in Atomic Layer Deposition. J. Vac. Sci. Technol. A 2020, 38, 020804. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Ponton, S.; Benz, M.; Crisci, A.; Reboud, R.; Giusti, G.; Volpi, F.; Rapenne, L.; Vallee, C.; Pons, M.; et al. Aluminum Nitride Thin Films Deposited by Hydrogen Plasma Enhanced and Thermal Atomic Layer Deposition. Surf. Coat. Technol. 2018, 347, 181–190. [Google Scholar] [CrossRef]
- Banerjee, S.; Aarnink, A.A.; Kruijs, R.; Kovalgin, A.Y.; Schmitz, J. PEALD AlN: Controlling growth and film crystallinity. Phys. Status Solidi C 2015, 12, 1036–1042. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.S.; Yun, H.J.; Ryu, S.Y.; Choi, B.J. Effect of Growth Temperature on AlN Thin Films Fabricated by Atomic Layer Deposition. Ceram. Int. 2018, 44, 17447–17452. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Kordesch, M.E. Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films. Phys. Status Solidi C 2005, 2, 2821–2827. [Google Scholar] [CrossRef]
- Tzou, A.-J.; Chu, K.-H.; Lin, I.-F.; Østreng, E.; Fang, Y.-S.; Wu, X.-P.; Wu, B.-W.; Shen, C.-H.; Shieh, J.-M.; Yeh, W.-K.; et al. AlN Surface Passivation of GaN-Based High Electron Mobility Transistors by Plasma-Enhanced Atomic Layer Deposition. Nanoscale Res. Lett. 2017, 12, 315. [Google Scholar] [CrossRef] [Green Version]
- Shih, H.-Y.; Lee, W.-H.; Kao, W.-C.; Chuang, Y.-C.; Lin, R.-M.; Lin, H.-C.; Shiojiri, M.; Chen, M.-J. Low-temperature Atomic Layer Epitaxy of AlN Ultrathin Films by Layer-by-Layer, in-situ Atomic Layer Annealing. Sci. Rep. 2018, 7, 39717. [Google Scholar] [CrossRef] [Green Version]
- Brunner, D. Optical Constants of Epitaxial AlGaN Films and Their Temperature Dependence. J. Appl. Phys. 1997, 82, 5090–5096. [Google Scholar] [CrossRef]
- Özgür, Ü.; Webb-Wood, G.; Everitt, H.O.; Yun, F.; Morkoç, H. Systematic Measurement of AlxGa1−xN Refractive Indices. Appl. Phys. Lett. 2001, 79, 4103. [Google Scholar] [CrossRef] [Green Version]
- Ozgit-Akgun, C.; Goldenberg, E.; Okyay, A.K.; Biyikli, N. Hollow Cathode Plasma-assisted Atomic Layer Deposition of Crystalline AlN, GaN and AlxGa1−xN Thin Films at Low Temperatures. J. Mater. Chem. C 2014, 2, 2123–2136. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, L.; Baird, R.; McCullen, E.; Auner, G.; Shreve, G. XPS Analysis of Aluminum Nitride Films Deposited by Plasma Source Molecular Beam Epitaxy. Surf. Interface Anal. 2008, 40, 1254–1261. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Yang, H.; Wu, H.; Zhou, J.; Hu, L. Bipolar Resistive Switching Properties of AlN Films Deposited by Plasma-enhanced Atomic Layer Deposition. Appl. Surf. Sci. 2014, 315, 110–115. [Google Scholar] [CrossRef]
- Greczynski, G.; Petrov, I.; Greene, J.E.; Hultman, L. Al Capping Layers for Nondestructive X-ray Photoelectron Spectroscopy Analyses of Transition-metal Nitride Thin Films. J. Vac. Sci. Technol. A 2015, 33, 05E101. [Google Scholar] [CrossRef] [Green Version]
- Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L. Core-level Spectra and Binding Energies of Transition Metal Nitrides by Non-destructive X-ray Photoelectron Spectroscopy Through Capping Layers. Appl. Surf. Sci. 2017, 396, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Muneshwar, T.; Cadien, K. Comparing XPS on Bare and Capped ZrN films Grown by Plasma Enhanced ALD: Effect of Ambient Oxidation. Appl. Surf. Sci. 2018, 435, 367–376. [Google Scholar] [CrossRef]
- Jokinen, J.; Haussalo, P.; Keinonen, J.; Ritala, M.; Riihela, D.; Leskela, M. Analysis of AlN Thin Films by Combining TOF-ERDA and NRB Techniques. Thin Solid Films 1996, 289, 159–165. [Google Scholar] [CrossRef]
- Motamedi, P.; Cadien, K. XPS Analysis of AlN Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition. Appl. Surf. Sci. 2014, 315, 104–109. [Google Scholar] [CrossRef]
- Taborda, J.A.P.; Landazuri, H.R.; Londono, L.P.V. Correlation Between Optical, Morphological, and Compositional Properties of Aluminum Nitride Thin Films by Pulsed Laser Deposition. IEEE Sens. J. 2016, 16, 359–364. [Google Scholar] [CrossRef] [Green Version]
Deposition Temperature | [Al] at.% | [N] at.% | [O] at.% | [C] at.% | [N]/[Al] | [N]/[N–Al] |
---|---|---|---|---|---|---|
225 °C | 44.8 | 47.7 | 7.5 | <d.l.1 | 1.1 | 0.34 |
300 °C | 40.6 | 49.4 | 10.0 | <d.l.1 | 1.2 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.C.; Hwang, S.M.; Le, D.N.; Kondusamy, A.L.N.; Mohan, J.; Kim, S.W.; Kim, J.H.; Lucero, A.T.; Ravichandran, A.; Kim, H.S.; et al. Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source. Materials 2020, 13, 3387. https://doi.org/10.3390/ma13153387
Jung YC, Hwang SM, Le DN, Kondusamy ALN, Mohan J, Kim SW, Kim JH, Lucero AT, Ravichandran A, Kim HS, et al. Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source. Materials. 2020; 13(15):3387. https://doi.org/10.3390/ma13153387
Chicago/Turabian StyleJung, Yong Chan, Su Min Hwang, Dan N. Le, Aswin L. N. Kondusamy, Jaidah Mohan, Sang Woo Kim, Jin Hyun Kim, Antonio T. Lucero, Arul Ravichandran, Harrison Sejoon Kim, and et al. 2020. "Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source" Materials 13, no. 15: 3387. https://doi.org/10.3390/ma13153387
APA StyleJung, Y. C., Hwang, S. M., Le, D. N., Kondusamy, A. L. N., Mohan, J., Kim, S. W., Kim, J. H., Lucero, A. T., Ravichandran, A., Kim, H. S., Kim, S. J., Choi, R., Ahn, J., Alvarez, D., Spiegelman, J., & Kim, J. (2020). Low Temperature Thermal Atomic Layer Deposition of Aluminum Nitride Using Hydrazine as the Nitrogen Source. Materials, 13(15), 3387. https://doi.org/10.3390/ma13153387